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Abstract— 

 The amount of radiotracer injected to laboratory animals is still the most daunting challenge facing translational PET studies. Since 

low-dose imaging is characterized by a higher level of noise, the quality of the reconstructed images leaves much to be desired. Being the 

most ubiquitous techniques in denoising applications, edge-aware denoising filters, and reconstruction-based techniques have drawn 

significant attention in low-count applications. However, for the last few years, much of the credit has gone to deep-learning (DL) 

methods, which provide more robust solutions to handle various conditions. Albeit being extensively explored in clinical studies, to the 

best of our knowledge, there is a lack of studies exploring the feasibility of DL-based image denoising in low-count small-animal PET 

imaging. Therefore, herein, we investigated different DL frameworks to map low-dose small-animal PET images to their full-dose 

equivalent with quality and visual similarity on a par with those of standard acquisition. The performance of the DL model was also 

compared to other well-established filters, including Gaussian smoothing, non-local means, and anisotropic diffusion. Visual inspection 

and quantitative assessment based on quality metrics proved the superior performance of the DL methods in low-count small-animal 

PET studies, paving the way for a more detailed exploration of DL-assisted algorithms in this domain. 
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I. INTRODUCTION 

 

OSITRON emission tomography (PET) has proved its mettle not only in a myriad of clinical applications but also holds great 

potential in understanding the specific molecular mechanisms that occur in small-animal models of human disease. Although the 

preclinical application of PET imaging is growing by leaps and bounds in the last decades, the amount of injected activity to 

laboratory animals is the most critical concern hitherto facing translational PET studies, particularly when the repeated 

administration of radioactive agents to the same animal is required for longitudinal studies. Needless to say, a higher amount of 

radiotracer guarantees a sufficiently high signal-to-noise ratio (SNR) but may adversely influence the experimental outcomes due 

to a well-known “mass effect” (Jagoda et al., 2004; Kung and Kung, 2005). This is also extremely important for neuroreceptor 

studies where the specific activity is problematic and the induced pharmacological effects could violate the tracer principle (Herfert 

et al., 2020). Indeed, limiting the tracer activity in PET studies not only alleviates the concerns over the toxicity and 

pharmacological effects of the injected radiotracer but also decreases the amount of radiation to animals and operators in core 

laboratories, lowers the total imaging cost, improves the scanner throughput, and above all, would set the stage for exploring new 

generations of radiotracers (Molinos et al., 2019). 

It is obvious that low-count PET imaging (small injected activity or fast scan) is characterized by higher levels of noise and thus 

interpretation inaccuracies. This is of particular concern in animal studies regarding the lower sensitivity of the preclinical scanners 

and shorter acquisition times due to the compounding effects of anesthesia on animal physiology as well as the rapid metabolism 

rate in rodents. The situation is further aggregated, for example, in fast dynamic studies, screening short-lived radioisotopes, and 

multitracer PET investigations, where the number of collected events is inherently limited therein. 

Hence, a host of hardware-based and software-based solutions were investigated and deployed to move forward and to resolve 

the challenges related to count deficiency in low-statistics PET studies (Zaidi and El Naqa, 2021). The former strategies were 
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extensively discussed in (Amirrashedi et al., 2020b; Amirrashedi et al., 2020c) and based around developing high-end scanners 

with improved detection capabilities. While the latter offer more cost-effective solutions and could be segregated into three broad 

categories: (i) Edge-aware noise attenuating filters (nonlocal means (NLM) (Arabi and Zaidi, 2018, 2020; Buades et al., 2005), 

bilateral filtering (BF) (Tomasi and Manduchi, 1998), anisotropic diffusion (AD) (Perona and Malik, 1990), and image guided 

filters (IGFs) (He et al., 2010) … etc.), (ii) iterative reconstruction algorithms (Reader and Zaidi, 2007) (maximum a posteriori 

(MAP), penalized weighted least-squares (PWLS), total variation based reconstruction, smoothing priors, etc.,), and (iii) 

deep-learning (DL)-inspired methods. 

Post-reconstruction filtering and reconstruction-based strategies are yet the most ubiquitous techniques in denoising 

applications and have a long-lasting history in this domain. However, for achieving state-of-the-art results, the pertinent parameters 

(e.g., noise level, kernel size, number of iterations, regularization strength, and etc.) need all to be adjusted and optimized 

professionally according to the type of imaging task. Over and above the laborious parameter tuning and frequent 

disparities resulting from human biases, the pain point is the heavy computational load and time complexity of such algorithms.  

The last category belongs to DL-based methods, which are entrusted to learn the ill-posed relation between high-statistics 

emission images and the low-count counterpart rather than denoising the emission data. From an architectural point of view, 

Convolution Neural Network (CNN) particularly multi-scale U-Net models along with Generative Adversarial Network (GAN) 

are already the most preferred types of DL frameworks in the image processing domain. Off-late, various custom-built DL 

paradigms were utilized successfully in a broad range of PET studies, such as noise suppression, sinogram correction, attenuation 

correction, scattering estimation, low-dose (LD) PET imaging, and direct image reconstruction. One can refer to the most recent 

reviews on this topic (Arabi et al., 2021; Gong et al., 2020a; Lee, 2021; Reader et al., 2021; Wang et al., 2021; Zaidi and El Naqa, 

2021).  

In existing works, several authors reported the contribution of modified CNN designs with single or multimodal inputs in the 

solutions to full-dose (FD) PET estimation. As such, Cui et al. utilized an unsupervised DL method to recover clean PET images 

from noisy measurements. To this end, anatomical priors, like CT and MRI images of the patient were considered as the network 

input, and the noisy images were introduced as the train labels (Cui et al., 2019). Xiang et al. proposed a deep auto-context CNN 

framework with multimodal input channels to build high-quality standard counting PET images where 2D patches of PET and 

T1-weighted MRI slices were used for training the network (Xiang et al., 2017). Similarly, Chen et al. investigated an adapted 

U-Net model to gauge high SNR and visually pleasing amyloid PET images by feeding the network with multi contrast MRI scans 

along with LD PET (Chen et al., 2019). da Costa-Luis and Reader introduced a relatively small but highly efficient CNNs called 

micro-nets for denoising low-count dataset whereby three realizations of the same PET acquisition provided by different 

reconstructions and the corresponding T1-weighted MRI image were inputted to the network (da Costa-Luis and Reader, 2021). 

This work and similar investigations confirmed that joint multimodal inputs would lead to a significant gain in network 

performance compared to PET-only models (da Costa-Luis and Reader, 2021). However, besides the inter-modality mismatches 

and higher imaging costs associated with multiple acquisitions, the application of multimodality guided networks is limited to 

hybrid scanners and not feasible with monomodal instruments.  

Meanwhile, inspired by the successful implementation of a residual training scheme in sparse-view CT reconstruction and 

inasmuch as the conventional U-Net structure leads to extremely blurred boundaries, the attention shifted toward the residual 

U-Net models (Han et al., 2016) and also GAN variants (Gong et al., 2020b; Wang et al., 2018; Zhou et al., 2020). Following this 

trend, Xu et al. explored employing a residual U-Net architecture for enabling low-dose brain PET imaging taken at 1/200
th

 of the 

routine dose (Xu et al., 2017). Compared with an auto-context network, NLM, and BM3D filters, residual U-Net presented 

compelling results in the terms of image quality, structural similarity, and execution speed. The authors also proved that supplying 

the network using 2.5D inputs makes it possible to conserve the contextual information and the tracer uptake pattern more 

effectively as compared with the single slice training strategy. In a quantitative study conducted on small lung lesions, Lu et al. 

demonstrated that a 3D U-Net denoising results in better image quality and lower mean tracer uptake bias compared to Gaussian 

filtering, CT-guided NLM filter, and MAP reconstruction with quadratic and relative difference priors (Lu et al., 2019). Later on, 

Spuhler and colleagues investigated a 2.5D dilated U-Net with residual and skip connections in LD brain PET restoration. The 

advantage of a dilated network was shown in predicting sharper and well-restored outputs by removing the down-sampler and 

up-sampler operators in the conventional U-Net architecture (Serrano-Sosa et al., 2020; Spuhler et al., 2019). Another study on LD 

to FD mapping was performed by Sanaat et al. in which the author proved the qualitative and quantitative superiority of 

sinogram-domain training compared to image-domain FD recovery, though at the cost of 6 folds larger computation time (Sanaat et 

al., 2020). This work was extended for whole-body (WB) PET imaging using modified cycle-consistent generative adversarial 

network (CycleGAN) and residual neural network (ResNet) models (Sanaat et al., 2021). Lei et al. unveiled the superior 

performance of GAN variants in WB PET denoising (Lei et al., 2019). In a recent study by Gong et al, it was demonstrated that a 

Wasserstein GAN (WGAN) framework trained with mixed adversarial loss function has higher denoising performance in contrast 

to networks trained with pure adversarial or conventional objective functions (Gong et al., 2020b). 

Albeit being extensively examined for clinical purposes, so far as we know, no study has yet to explore the feasibility of 

DL-based image enhancement in the low-count preclinical scenarios. As the case in humans, the administered dose and acquisition 

time are standing as the most challenging hurdles in murine studies. Motivated by the diverse applications of DL techniques in 
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clinical trials and owing to its simple implementation and phenomenal success, herein, we examined different DL-based 

frameworks to generate FD small-animal PET images from undersampled scans mimicking actual LD scanning conditions. We 

also compared the results of DL-based FD reconstruction with other workhorse filters established for denoising applications; 

including Gaussian filter (GF), block-wise median-guided NLM (BMNLM), and anisotropic diffusion filter (ADF). To the best of 

our knowledge, this is the first study utilizing DL techniques to synthesis high-quality small-animal PET images using 20% of the 

recorded counts. Our main motivation is decreasing the administered activity as well as imaging time in the dedicated Xtrim-PET 

scanner (Amirrashedi et al., 2019) in which WB mice imaging necessitates acquiring two bed positions, doubles the scan duration, 

and adversely disturbs the uptake pattern to that of whole-body scanners. 

 

II. MATERIALS AND METHODS 

A. Image Acquisition and Dataset Preparation 

Prior to initiating the study, ethical clearance was obtained from the Animal Care and Ethics committee of the Tehran University 

of Medical Sciences (Approval number: IR.TUMS.MEDICINE.REC.1397.004). All procedures were conducted in a small animal 

core facility. Throughout the experiments, animals had enough access to water/food and were continuously monitored by 

professionally trained personnel. The small-animal PET images for this study were collected through a high-resolution Xtrim-PET 

camera dedicated to rodent imaging (Amirrashedi et al., 2019). Our dataset consists of fourteen mice (8 females / 6 males) with an 

average weight of 32 ± 10 gr. Animals have received a dose of 11 ± 2 MBq 
18

F-FDG and were kept on a heating pad during the 

uptake period. Five minutes prior to scan initiation, anaesthesia was performed by intraperitoneal administration of a 

ketamine/xylazine mixture (100 mg/kg ketamine + 10 mg/kg xylazine). About 45-60 minutes after tracer injection, each subject 

was scanned under the scanner default protocol settings (energy window = 350-650 keV, timing window = 5 ns, FOV = 80 mm, 2 

bed positions, 10 minutes per bed). 

For each acquisition, 1/5
th

 of the counts were selected randomly to emulate the low-count acquisition whereas the normal-count 

data were generated by considering all coincidences detected during the scanning period (Schaefferkoetter et al., 2019). We have 

examined the reliability of the method through several phantom experiments, some of which were described in the next section. To 

increase the number of samples and to compare different methods, we synthesized five realizations for each subject. To this end, 

we randomly downsized the FD counts into five independent LD list mode files, each containing 20% of the events. All images 

were reconstructed through an ordered subsets expectation maximization (OSEM) algorithm (5 iterations, 8 subsets by considering 

decay, normalization (Amirrashedi et al., 2020a), attenuation (two-level segmentation method), and scatter corrections with tail 

fitting. There were 121 slices per scan and reconstructed images had 130 × 130 pixels with voxel sizes of 0.615 mm × 0.615 mm × 

1.05 mm. All slices containing the thorax and abdomen regions were selected to train the network (from the neck to the lower 

abdomen). 

B. Synthetic LD generation 

In this study, we approximated the LD conditions (synthetic LD) by randomly down-sampling the events collected during the 

standard-dose acquisitions. From a theoretical point of view, the overall image quality should be identical for the emission images 

reconstructed from the same number of true events. Therefore, it is acceptable to use down-sampled LD images as a surrogate for 

the actual LD conditions performed in the same count levels (Schaefferkoetter et al., 2019). However, one should take into account 

the rate of true and random coincidences, which strongly depends upon the activity concentration and the object size within the 

FOV. In this section, we describe two phantom experiments to showcase the validity of the hypothesis.  

In the first experiment, we filled the NEMA image quality (IQ) phantom with an activity concentration of 7.5 µci/gr and scanned 

it for 10 minutes. In the second study, a uniform cylinder with a 1.5 cm diameter and 6.5µci/gr was placed inside the FOV and 

imaging was performed for 5 minutes. The cylinder was located inside a water phantom with a 3cm diameter. For both studies, the 

acquisition was repeated until the activity level in the phantom reached 0.2 of its initial value (actual LD scans). To generate 

synthetic LD data from the standard-dose scans, we randomly down-sampled the 20% of the events stored in the list mode files 

during full dose acquisition. All data, including FD, synthetic LD, and actual LD images were corrected (for attenuation, 

normalization, decay, scattering, and random) and reconstructed using OSEM algorithm (5 iterations, 8 subsets). 

C. The Network Architecture 

1) U-Net models 

We trained four networks based on a multi-scale U-shaped architecture tweaked for our purpose (Ronneberger et al., 2015). The 

base model is illustrated in Fig.1 and implemented in Keras and Tensorflow libraries (Abadi et al., 2016; Chollet, 2018). Our 

modified U-Net model is composed of an analysis module/encoder to extract the high-level features by compressing the input 

image, and a synthesis module/decoder to construct the labels by mapping the extracted features into the full dataset representation. 

Both encoding and decoding subnetworks include three steps with subsequent implementation of two convolutional blocks (shown 

in blue). Each block is formed by a convolutional layer with a kernel width of 3, followed by a batch normalization (BN) and an 

Exponential linear unit (ELU). Compared to the rectified linear unit (ReLU) and its variants, ELU is less sensitive to noise. 

Therefore, we chose ELU as the activation function for training procedures (Clevert et al., 2015). Downsampling of the feature 
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map is accomplished using an strided convolution in the encoder side whilst to preclude the checkboard artifacts (which was severe 

in our case), a bicubic interpolation algorithm is performed to increase the dimensionality in the decoding step. To avoid resolution 

loss and to prevent gradient diffusion, concatenating connections are also integrated to pass the same-scaled features from the 

encoder to the corresponding stage in the decoder. Finally, a convolution layer with a kernel width of 1 is utilized to map the feature 

vector to the network output. 

2) GAN framework 

The proposed GAN framework has two main components: 1) a U-Net-like generator G which takes low-dose PET and predicts 

its full-dose counterpart 2) a discriminator D which tries to distinguish between predicted images by the generator (PD) and the true 

full-dose images (FD). Instead of using a simple CNN model, the modified U-Net model (Fig.1.a) was used as the generator for the 

GAN model used in this study. 

 The second part of the network is the discriminator (Fig. 1.b) which includes four strided convolution layers with 3 × 3 kernels 

and two fully connected layers. We used BN and LeakyReLU after all convolutions. The number of kernels is 

32/64/128/256/128/64/32/1 for the generator and 64/128/256/512/1024/1 for the discriminator. 

D. Training Strategies and Hyperparameters 

1) U-Net training 

Given the challenges imposed by volumetric training models (e.g., large memory footprints, time and computation constraints), 

we opt to train the networks on 2D and 2.5D (called synthetic 3D) schemes with the same encoder-decoder architecture therein 

before discussed. The most notable difference between 2D and 2.5D concepts is the input layer which could be defined as a vector 

with a size of (C × S × W × H), where C is the number of channels, S indicates the number of slices along the z-direction, and (W 

× H) denotes the in-plane dimensions for each transaxial slice. According to the above definitions, (1 × 1 × 128 × 128) and (3 × 3 × 

128 × 128) vectors were inputted for training 2D and 2.5D models, respectively. 

Our 2.5D set-up takes the 3 juxtaposed slices (the source slice coupled to the superior/inferior slices) as different input channels 

to predict the output for the middle slice. Doing so provides more context information and spatial cues comparing to its single slice 

2D alternative, empowers the U-Net to differentiate between radiotracer uptake patterns and noise texture, yielding better results. 

For both 2D and 2.5D models, we compared the image-to-image transformation to that of residual mapping. In residual 

networks, mapping relies on the difference between full and low-count images in lieu of directly estimating the original FD images. 

Since residual learning is easier than direct mapping, converges is faster. 

As summarized in Fig. 2 (a-d), we trained four separate U-shaped models: 2D-UNet (single slice LD/FD mapping), 2D-RUNet 

(single slice LD/residual mapping), 2.5D-UNet (multi-slice LD/FD mapping), and 2.5D-RUNet (multi-slice LD/residual 

mapping). 

The models have trained over 200 epochs (there were no further improvements noticed in the model) with a mini-batch size of 10 

and using the Adam optimization approach with a learning rate (LR) of 1e − 4. The mean absolute error (MAE) was used to 

compute the loss between the network prediction and target-truth label, since it is more robust to noise and artifacts in comparison 

to mean squared error (MSE) (da Costa-Luis and Reader, 2021; Wang et al., 2018; Xu et al., 2017). To improve the network 

generalizability, four-fold augmentation was performed and the number of samples was enhanced by randomly rotating, 

translating, and flipping (horizontally and vertically) the data during the training phase. 

2) Training WGAN based on transfer-learning 

Following the latest studies (Gong et al., 2020b; Shan et al., 2018), we trained the proposed GAN model using Wasserstein 

distance and improve it by adding a gradient penalty (Eq.1). Gong et al.(Gong et al., 2020b) introduced a hybrid 2D & 3D as the 

denoising model while Shan et al. (Shan et al., 2018) transferred the parameters of a pre-trained 2D Conveying Path-based 

Convolutional encoder-decoder to initiate the generator with 3D kernels in a PTWGAN framework. Herein, we preferred to use the 

parameters of the previously trained 2.5D design to train our PTWGAN model. Furthermore, due to the noisy nature of the LD 

images, we added the MAE term (instead of MSE term in (Gong et al., 2020b)) to the training loss of the generator to decrease the 

amount of noise while enhancing the pixel-wise similarity between PD and FD images (Gong et al., 2020b; Shan et al., 2018). The 

adversarial loss functions used for training the proposed PTWGAN is summarized in (1). The generator and discriminator of the 

proposed network were optimized following (2) and (3), respectively. Wgp and WMAE are the weighting parameters for the gradient 

penalty and MAE terms in the mixed loss function, respectively. 
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 b aΕ  is the expectation of a as a function of b, is the gradient operator, in (4) I is the sample synthesized between real and fake 

images in which β has a uniform distribution in the interval of [0,1].   As suggested in (Gong et al., 2020b), task-specific 

initialization for the generator decreases the difficulty of the training procedure and enhances the performance of the network in 

low-dose imaging. To this end, first we trained a 2.5D U-Net model directly from the scratch with MAE loss, Adam optimizer (LR 

= 1e – 4), and epochs = 40. In the second step we transferred the parameters of the trained model to initialize the generator in the 

WGAN framework. Similar to previous studies(Gong et al., 2020b; Shan et al., 2018), we trained the generator and discriminator 

separately where the number of extra training steps for the discriminator was 4. For training based on transfer learning, we used the 

following settings for hyperparameters: Adam optimizer (LR = 5e – 5), batch-size = 40, epochs = 10.  

As has been suggested from previous studies, we set the weighting parameter for gradient penalty to 10 [28], but for finding the 

optimum MAE weighting parameter we examined different values for WMAE. Finally, we achieved the lowest NRMSE on test data 

when the weighting factor for the MAE term was 10
5
 (see Fig. 3). 

 

E. Cross-validation 

In this work, we considered two different scenarios. In the former, we investigated different DL models for our particular case. In 

this regard, we selected three WB mice scans for testing the final model (not included in the training and validation phase) and used 

the rest for training and hyperparameter tuning.  

In the second scenario, we conducted leave-one-group-out cross-validation to further appraise the network performance and to 

compare different post-reconstruction denoising methods as suggested in [23, 27]. For 14 mice, we trained the network with 6 

groups of mice (12 mice) and tested on the reminder group (2 mice). We repeated this process 7 times to retrieve the FD images for 

each mouse. After training the network, low-count test images (considering 5 realizations for each mouse) were inputted into the 

model to synthesis the corresponding labels. 

It should be noted that 16’800 axial slices were used for training of the proposed model, including 12 (number of mice) × 70 

(number of axial slices for each mice) × 5 (number of realizations generated for each sample) × 4 (number of augmentations over a 

single image). The test data set consisted of 700 axial slices, including 2 (number of mice) × 70 (number of axial slices for each 

mice) × 5 (number of realizations generated for each sample). 

F. Comparison to Existing Filtering Approaches  

As per discussed, we investigated the competitive performance of the DL method against the existing filtering techniques 

including Gaussian post-reconstruction filtering, median-guided block-wise NLM [37], and anisotropic diffusion as well [10]. 

1) Gaussian Filter 

The smoothing strength of the GF depends solely upon the standard deviation of the kernel. To preclude the over smoothing 

effect and subsequent resolution loss, the standard deviation was set to 0.6. 

 

2) Block-wise MNLM Filter 

Being one of the most powerful noise cancellation concepts, the classical NLM formula replaces each voxel in the noisy image 

with a weighted average of all voxels in a predefined search window centered at the target voxel v [6]. Block wise implementation 

allows to compute the NLM solution in a 3D manner rather than 2D patches. The weight between two voxels v and v’ is then 

calculated by taking to account the similarity of their neighborhood configuration. The filtering steps could be expressed as:  
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With more detail, IBMNlM is the smoothed image evolved by BMNLM filter, NF is a normalization constant to guarantee that the 

summation of the weights for the target voxel equals 1, M is the filtered LD image using a median filter with a kernel size of K, 

and w (v, v’) stands for BMNLM weight between two voxels of v and v’, ǁ.ǁ is the L2-norm between the similarity patches/blocks 

of v and v’, s is the box-shaped similarity window, h specifies the decay of the exponential function and thus controls the 

smoothing performance of the filter. It is determined based on the standard deviation in a homogeneous background region. To 

avoid over-weighting of the target voxel and to take care of information-bearing features, we implemented an extended version of 

the BMNLM as suggested by Chan et al. [37]. To this end, we first applied a 3D median kernel with a small size of 3 on the noisy 

LD images to remove the transient speckle noise and then extracted the BMNLM weights from the median filtered images. The 

estimated weights were then implemented on the noisy LD image to achieve the final results. Note that median filtering is only used 

to extract the filter weights. as a tradeoff between computational cost and the filtering performance, a search window of 5 × 5 × 5 

and a similarity window of 3 × 3 × 3 were chosen empirically for all the experiments. 

3) Anisotropic Diffusion Filter  

ADF is another remedy toward edge-preserving noise cancelation, wherein denoising operation is being modeled as an iterated 

diffusive process which encourages the diffusion in regions with small inter-pixel fluctuations while avoids it in areas with high 

variations (e.g., boundaries, edge, prominent features). Mathematically, the AD equation is formulated as: 

0
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IADF is the image restored using the ADF equation, g is the conduction coefficient, which depends on the image gradient in 

different directions, div is the divergent operator, and t used to enumerate the iterations. We used the quadratic model in (9) to 

compute the conduction coefficients, since it gives better results in the terms of contrast. Using the 3D version of the ADF with 26 

neighbors, we set the value of diffusion rate to < 3/44 to keep the stability of the diffusion process. Following [38], we selected the 

edge-conservation term  empirically according to the standard deviation inside a homogeneous ROI. 

G. Quantitative Analysis  

We investigated the restoration performance of the proposed networks along with other denoising strategies, in terms of 

normalized root mean square error (NRMSE), peak signal to noise ratio (PSNR), structural similarity index (SSIM), and 

normalized cross-correlation (NCC) defined as follow:  
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   refers to the ground-truth corresponding to the FD image in our case. The image under evaluation is indicated by    which is 

either the LD image or the restored image following one of the methods described in previous sections. In (10),    and    show the 

mean intensity value for    and IG, respectively. C1 and C2 are the constants to avoid a null denominator.     is the covariance of 

  and   ,whereas    and    indicate the variances .  indicates the number of voxels inside the body, MAXG is the maximum value 
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in    and MSE presents the mean squared error between    and   . 
TABLE I. IMAGE QUALITY METRICS FOR FD, SYNTHETIC LD, AND ACTUAL LD SCANS. 

NEMA IQ phantom 

Data set FD Synthetic LD Actual LD 

NRMSE - 0.113 0.111 

PSNR - 33.71 33.76 

NCC - 0.981 0.986 

SSIM - 0.879 0.881 

Uniform 

region 

RC 1.051±0.06 1.048±0.09 1.01±0.08 

CV 5.7% 8.5% 7.9% 

Hot rods 

(diameter) 

RC (5mm) 0.742±0.1 0.72±0.17 0.733±0.16 

RC (4mm) 0.654±0.1 0.656±0.16 0.667±0.16 

RC (3mm) 0.449±0.08 0.447±0.12 0.448±0.11 

RC (2mm) 0.327±0.09 0.315±0.1 0.313±0.09 

Uniform phantom 

Data set FD Synthetic LD Actual LD 

NRMSE - 0.108 0.096 

PSNR - 36.9 37.1 

NCC - 0.985 0.987 

SSIM - 0.973 0.975 

Uniform 

region 

RC 0.95±0.072 0.93±0.08 0.92±0.075 

CV 7.8% 8.6% 8.1% 

 

 

 In (13), I and        computes the mean and standard deviation inside the masked volume. To get more realistic results and to 

exclude the background voxels, a binary mask was applied to the WB PET images. Image quality metrics were then computed over 

all the voxels that lie inside the body volume. We also performed a joint histogram analysis to illustrate the voxel-wise correlation 

of the standardized uptake values (SUV) between denoised and reference FD PET images. 

Additionally, we computed the coefficient of variation (CV) and recovery coefficient (RC) to compare the synthetic LD and 

actual LD phantom scans. For the uniform region, the mean activity concentration and standard deviation were calculated inside a 

3D volume of interest (VOI) encompassing 70% of the phantom size. For hot spheres inside the IQ phantom, we calculated the 

average of the voxel intensities ≥ 80% of the maximum voxel. CV was defined as the ratio of standard deviation to the mean value 

inside the predefined VOI, and the RC was the ratio of mean activity in the VOI to the true activity inside the phantom. 

H. Statistical Analysis  

For statistical analysis, a paired-sample t-test was carried out in Prism 8 (Graph Pad Software Inc., San Diego, CA, USA) to 

compare the image quality metrics (PSNR, NRMSE, NCC, and SSIM) among different methods. Bonferroni adjusted P-values less 

than 0.05 were deemed to reflect statistical significance. All the metrics were computed relative to the target-truth image. 

Moreover, when comparing different denoising methods, evaluation metrics were calculated across five realizations for each 

subject and reported as mean ± standard deviation. 

 

III. RESULTS 

A. Comparison between synthetic and actual LD scans 

 

 

 

 

Image quality metrics for FD, synthetic LD, and actual LD scans for IQ and uniform phantoms were presented in Table I. 

Transverse slices form IQ phantom experiment were also illustrated in Fig.4. The image characteristics are almost identical 

between down-sampled and actual LD conditions (P-value > 0.05) which shows that the synthetic LD images used in this work are 

appropriate surrogates for actual LD scans (this holds for the activity concentrations and object size used in this work). 
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B. Comparison among DL models 

1)  U-Net models 

 

Fig. 5 illustrates several examples for a 38gr mouse PET scan from different (coronal, sagittal, and transverse) views. From left 

to right, images represent (a) noisy LD images, synthesized FD images with (b) 2D-UNet, (c) 2D-RUNet, (d) 2.5D-UNet, (e) 

2.5D-RUNet, along with the corresponding (f) ground-truth or FD image. From the data in Fig. 5, it is apparent that irrespective of 

the model, DL can significantly reduce the amount of noise in the inputs images without sacrificing the key information and organ 

boundaries. Moreover, shape distortions in the myocardium and the fuzzier appearance of the intestinal tract are markedly 

recovered through the DL pipelines. However, the images treated with the 2D configuration exhibit pixelated appearance and 

stair-step artifacts (pointed by red arrows), particularly in the coronal and sagittal views, indicating the paucity of information 

along the axial direction. The same results are also reported in clinical applications of DL-based denoising (Lu et al., 2019). At the 

other extreme, the images synthesized through the 2.5D concept are more uniform, better decode the uptake pattern using the 

volumetric information coming from adjacent slabs, and thus yielding comparable qualities to the original FD images. The 

differences between 2D and 2.5D models are therefore more discernable for the organs with contiguous uptake pattern that 

encompasses multiple axial planes including paraspinal regions (marked in red) or gastrointestinal (GI) tract (annotated by green 

arrows). 
TABLE II, QUANTITATIVE COMPARISON AMONG DIFFERENT DL NETWORKS. QUALITY METRICS WERE CALCULATED FOR TEST DATASET AND REPORTED AS 

MEAN ± STANDARD DEVIATION 

Evaluation Metric NRMSE PSNR NCC SSIM 

LD 0.106± 0.001 35.2±0.6 0.96±0.0025 0.958±0.006 

2.5D-RUNet 0.069±0.002 37.13±0.67 0.987±0.0019 0.984±0.003 

2.5D-UNet 0.07±0.0006 36.97±0.58 0.986±0.0005 0.982±0.002 

2D-RUNet 0.077±0.001 36.76±0.53 0.983±0.0007 0.976±0.004 

2D-UNet 0.085±.003 36.05±0.61 0.981±0.002 0.973±0.007 

PTWGAN 0.071±0.0009 36.89±0.6 0.987±0.0007 0.982±0.003 

P-value 

Evaluation Metric NRMSE PSNR NCC SSIM 

(2.5D vs. 2D)-RUNet 0.002 0.007 0.0013 0.0089 

(2.5D vs. 2D)-UNet 0.093 0.069 0.0064 0.0048 

 

 

Comparing to 2.5D-UNet, 2.5D-RUNet shows slightly better performance at distinguishing the noise content from the sharp 

boundaries. It could also be inferred that 2.5D-RUNet ensures numerically better predictions when comparing the myocardium 

intensities (blue arrows) and the intestine tract (green arrows) between 2.5D models. The same results could be found when looking 

closer at the images subjected to 2D networks. Indeed, 2.5D-RUNet suppresses the noise using the information provided by the 

multiple input channels and grasps the high-frequency contents conveyed by the strong edges through a direct connection with the 

input image.  

Quantitative comparisons among the models are also tabulated in Table II. Significant differences across all quality metrics were 

found between the LD images and those obtained with DL models (P-value < 0.01). Supporting the results obtained from the visual 

interpretations, 2.5D networks beat their 2D counterparts in the terms of NRMSE, PSNR, and structural similarity, quantifying the 

fact that the 2.5D setting results in high-quality predictions while preserving the numerical consistency of data. However, a barely 

meaningful difference was found between 2.5D models. 

2) U-Net vs. PTWGAN 

Comparing to pure U-shaped models, mixed adversarial loss functions results in denoised images with better textural 

information (Gong et al., 2020b; Shan et al., 2018). Fig. 6 demonstrates the image predicted by 2.5D-UNet with pure MAE loss and 

the output of the generator trained through mixed adversarial objective functions. 

Images treated with PTWGAN better resembles the true FD images in appearance and texture (see the green arrows indicating 

duodenum and jejunum in GI tract). Supporting the results reported in (Gong et al., 2020b; Lu et al., 2019), although training with 
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pure MAE loss function lead to slightly smaller NRMSE and higher PSNR values (Table II) but PTWGAN leads to images which 

has a closer texture pattern to the original FDs. Moreover, PTWGAN preserves more detailed information particularly in organs 

with inhomogeneous tracer uptake like liver and pancreas (yellow arrows), intestine (marked in green), and kidneys (white arrows). 

 It is worth noting that, we also examined pure adversarial loss (without additional MAE term) and the results were 

unsatisfactory (not shown here) due to severe edge artifacts which were also reported in clinical applications of PTWGAN (Gong 

et al., 2020b).Considering its superior performance (comparing to other U-Net models) and easy training scheme (comparing to 

PTWGAN), the 2.5D-RUNet was chosen as the baseline for the remaining of our study. 

C. Comparison with Other Denoising Methods 

In this section, we compared the outcomes achieved with 2.5D-RUNet against other post-reconstruction filtering methods with 7 

folds cross-validation. The visual comparison among different restoration methods is provided in Figs. 7 & 8. Upon visual 

inspection, all of the denoising methods lead to noticeable improvements in image quality and allow a significant reduction of the 

noise level in comparison to the LD image, however, the improvement rate is different among methods. Expectedly, smoothed 

images passed through a GF kernel are characterized by blurred boundaries around the liver and uterus horn (yellow arrows) whilst 

with other denoising methods, better performance was obtained in terms of edge-preservation, indicating optimal parameters 

setting in this study. Even though a preprocessing step is executed before computing ADF and BMNLM weights, images subjected 

to the ADF algorithm are prone to stair-case artifacts when dealing with high-frequency speckles or sudden alterations in intensity 

values (e.g., white arrows around uterus horn and red arrows in paraspinal region shown in Fig. 7). These artifacts are generated 

when the amplitude of the noise is close to the signal intensity. The BMNLM filter presents a more uniform denoising performance 

against ADF and GF, but the smoothed images slightly have a patchy like appearance.  

When compared to traditional filtering, images generated by the DL method are more homogenous in all views. It could be seen 

that DL attenuates the unwanted noise more than high contrasted subtle details with the advantage of producing artifact-free 

volumes that more closely resemble the original ones. The difference between the DL denoising and alternative approaches is more 

pronounced for the organs housed within the thoracic cage which could be attributed to a higher amount of noise in the mediastinal 

section. Furthermore, better shape recovery, for example, in the heart (blue arrows in Fig. 8), uterus horn (white arrows in Fig.7), 

and vertebral column was assessed through the DL whilst these regions were ignored by the rival methods. Similarly, the same 

results could be deduced for the lower body section where the activity in the small intestine and colon (green arrows in Figs. 7 & 8) 

was preserved more efficiently with DL, reflecting the inherent capability of neural networks to learn the relation between LD and 

FD pairs rather than purely denoising the input images. Quantitative data averaged on fourteen mice studies are summarized in 

Table III. Moreover, for each subject, NRMSE, PSNR, SSIM, and NCC plots are illustrated in Fig. 9, whereby mean and standard 

deviations are calculated across five realizations for each subject. The normalized root mean squared error averaged on WB PET 

scans of fourteen mice was 0.114±0.016, which decreased to 0.073 ± 0.009 with 2.5D-RUNet, compared to 0.085 ± 0.011, 0.079 ± 

0.008, and 0.081 ± 0.007 after post-processing with GF, ADF and BMNLM, respectively. Similarly, PSNR value improved from 

34.76 ± 2.1 dB on LD images to 36.71 ± 1.94 dB, 36.1 ± 1.97 dB, 36.41 ± 1.98 dB, and 36.28 ± 1.8 dB with 2.5D-RUNet, GF, ADF, 

and BMNLM, respectively. Structural similarity between synthesized images and corresponding original PET scans was also 

notable for all the methods. Average SSIM and NCC were 0.962 ± 0.008 and 0.965 ± 0.008 for LD images, respectively. Both 

metrics increased up to 0.986 ± 0.003 for the images enhanced with DL model. Respective values were 0.98 ± 0.004 and 0.978 ± 

0.004 with GF, 0.982 ± 0.003 and 0.981 ± 0.004 with ADF, and 0.981 ± 0.004 with BMNLM methods. 

From the joint histogram analysis and linear regression plots (Fig. 10), a higher correlation and voxel-wise correspondence can 

be observed between DL predicted and FD pairs (R
2
 = 0.986) compared to other denoising methods (R

2
 = 0.966 for GF, R

2
 = 0.98 

for ADF, and R
2
 = 0.977 for BMNLM). In addition, a relatively lower correlation (R

2
 = 0.944) was achieved between LD and FD 

images, indicating poor image quality and large local bias in SUV values. 

 
TABLE III, QUANTITATIVE COMPARISON AMONG DIFFERENT DENOISING METHODS. QUALITY METRICS WERE CALCULATED OVER ALL SAMPLES (FOURTEEN 

MICE) AND REPORTED AS MEAN ± STANDARD DEVIATION 

Evaluation Metric NRMSE PSNR NCC SSIM 

LD 0.115±0.016 34.76±2.1 0.965±0.008 0.962±0.007 

DL (2.5D-RUNet) 0.073±0.009 36.71±2.01 0.986±0.003 0.985±0.003 

GF 0.084±0.011 36.13±2.04 0.98±0.004 0.978±0.004 

ADF 0.0787±0.009 36.41±1.94 0.982±0.003 0.982±0.004 

BMNLM 0.08±0.008 36.28±1.87 0.981±0.004 0.981±0.004 

P-value 

Evaluation Metric NRMSE PSNR NCC SSIM 
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LD vs. DL <0.0001 <0.0001 <0.0001 <0.0001 

LD vs. GF <0.0001 <0.0001 <0.0001 <0.0001 

LD vs.  ADF <0.0001 <0.0001 <0.0001 <0.0001 

LD vs. BMNLM <0.0001 <0.0001 <0.0001 <0.0001 

DL vs. GF <0.0001 <0.0001 <0.0001 <0.0001 

DL vs. ADF <0.0001 <0.0001 <0.0001 <0.0001 

DL vs. BMNLM <0.0001 <0.0001 <0.0001 <0.0001 

GF vs. ADF <0.0001 <0.0001 <0.0001 <0.0001 

GF vs. BMNLM <0.02 <0.02 0.137 <0.0001 

ADF vs. BMNLM <0.0001 <0.0001 0.06 <0.01 

 

 

IV. DISCUSSION 

The main thrust of this study is to generate preclinical PET images of standard quality from only 1/5
th

 dose PET scans using a 

fully automated pipeline. Our findings confirm the prior works in the context of DL-based full-dose recovery. However, we 

pioneered to explore the application of DL-enabled image synthesis in the realm of preclinical practices where the importance of 

the dose minimization is more so than the clinic. This is because the maximum injectable volumes in rodents are considerably 

smaller compared to that of humans. Limiting the amount of tracer dose in preclinical imaging is manifold where reducing the 

radiation-induced hazards is only one benefit. Small injected activities circumvent the pharmacological violation caused by 

mass-effect and also the tracer-induced toxicity in animals. The situation is of huge importance, for example, when conducting 

quantitative studies with lower specific activities, shorter half-life radioisotopes, screening novel imaging agents with lower 

radiochemical yield, or in applications needed short frame duration (e.g., dynamic imaging and tracer kinetic studies). Also 

important is that injecting only small amounts of activity per scan could further improve the final image quality. This is attributed 

to a negligible fraction of random coincidences as well as the reduced dead-time effect in low activity regimens or through reducing 

the motion-related artifacts in rapid imaging scenarios. From an economic standpoint, moreover, low activity PET imaging is 

deemed cost-saving as it limits the amount of tracer per subject yet increasing the animal throughput. So far, various dose 

minimization strategies were followed in the research environment. Molinos et al. reported on reducing tracer dose in animal 

studies by a factor of 4, using a total body microPET/CT scanner with extended axial FOV (150mm) and improved detection 

sensitivity (Molinos et al., 2019). Liu et al. introduced a new post-reconstruction filtering approach and implemented it in nude 

mice studies (Liu et al., 2016). Hashimoto et al. proposed an unsupervised learning method for denoising the dynamic PET images 

collected from a living monkey brain and a series of simulation studies. Our results are in line with these findings and demonstrated 

that a 5-fold reduction in injected activity would be feasible using a DL-based framework even for a preclinical PET scanner with 

limited axial coverage (~ 50mm). Towards this end, we trained five individual networks namely: 2D-UNet, 2D-RUNet, 

2.5D-UNet, 2.5D-RUNet, and a PTWGAN framework with a 2.5D-UNet generator to convert the noise-corrupted LD images to 

regular quality FD mice scans. All networks trained successfully and exhibited strong noise elimination capabilities without 

significant degradation in edges and corners. Among all U-Net models, the 2.5D network based on residual formulation surpassed 

other variants both numerically and perceptually. Using the same U-Net topology as the generator in a PTWGAN framework 

trained based on mixed loss function yielded better approximation of tracer distribution and activity recovery. In contrast to 

PTWGAN, U-Net based processing results in lower noise levels but slightly poor textural information. 

Our findings also agree well with benchmark studies performed on human clinical PET datasets. Kaplan et al. (Kaplan and Zhu, 

2019) applied a GAN framework for WB PET denoising and reported an average improvement of ~30.98%, ~2.02%, and ~8.84% 

in RMSE, SSIM, and PSNR metrics, respectively. Our PTWGAN model also achieved 33.01%, 2.5%, and 4.81% improvement in 

terms of NRMSE, SSIM, and PSNR, respectively. Lei et al. (Lei et al., 2019) obtained an average NCC of 0.975 ± 0.008 and PSNR 

of 39.3 ± 4 using a GAN model in WB PET denoising while the LD PET images had an average NCC of 0.963 ± 0.003 and PSNR 

of 38.1 ± 3.4. In the current study, we calculated an average PSNR of 36.89 ± 0.6 and NCC of 0.987 ± 0.0007 for PTWGAN 

outputs while the respective values were 35.2 ± 0.6 and 0.96 ± 0.0025 for our LD dataset. 

As compared to already established filtering techniques, DL-based data recovery allowed us to achieve better results by reducing 

NRMSE values and improving PSNR, NCC, and SSIM measures. Considering varying noise levels among subjects, we tuned the 

filtering parameters to find the optimal results, which is often perplexing, time-consuming, and more importantly, requires domain 

expertise. For the case of BMNLM and ADF filters, we also eliminated the spurious signals through a median kernel to help the 

filtering process and to decrease the associated artifacts (Chan et al., 2013; Chan et al., 2007). On the contrary, DL models were 

trained on the grainy LD images and achieved satisfactory results without the need for computationally intensive processing or 

human assistance. These findings are in line with previous reports bore out the superiority of DL methods relative to existing 
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post-denoising methods (Gondara, 2016; Hashimoto et al., 2019; He et al., 2021; Lu et al., 2019; Xu et al., 2017). 

Lu et al. (Lu et al., 2019) investigated the quantitative accuracy of small lung nodules using DL-based denoising methods in 

oncological PET imaging. The authors showed that U-Net provides relatively smaller SUV bias as compared to Gaussian and NLM 

post-filtering. Hashimoto et al. (Hashimoto et al., 2019) demonstrated that noisy brain images treated by DL-based techniques have 

higher PSNR and SSIM relative to those processed with other algorithms, including Gaussian, IGF, and NLM filtering. Contrary to 

previous studies, where the model learns the mapping between low-count and high-count PET images, He et al. proposed a novel 

DL-based joint filtering framework, which learns the linear attenuation coefficients of spatially variant linear representation model 

in dynamic PET image denoising (He et al., 2021). They reported that DL-based joint filtering provides more realistic estimates of 

standard-dose PET images and improves the results (RMSE = 0.138 ± 0.016, SSIM = 0.805 ± 0.034) over conventional CNN-only 

(RMSE = 0.15 ± 0.016, SSIM = 0.774 ± 0.037) and MRI-guided post-filtering (RMSE = 0.149 ± 0.014, SSIM = 0.741 ± 0.041) 

alone. Since the model uses the MRI information as a prior, a similar setup could be implemented to boost the performance of 

DL-based denoising in multimodal preclinical PET imaging. ''It would also be of great interest to compare our DL-based noise 

reduction method to other filtering approaches, such as wavelet (Ouahabi, 2013) and curvelet transforms (Bal et al., 2019) or 

jointly incorporating them within a DL framework to further enhance the network performance (Kang et al., 2018; Kang et al., 

2017; Kang et al., 2021). 

As reported in previous studies (Kang et al., 2017; Lu et al., 2019), the main culprit for DL-based image recovery seems to be the 

fact that the ground-truth images are also plagued by some noise, which might confound the learning process and leads to poor 

predictions. One could facilitate the training process by suppressing the noise both in source images and target images via a 

low-passing filter or using a pre-trained network as implemented in this paper. 

Further enhancement in the results might be possible, for instance, through jointly incorporating the anatomical outlines and 

structural information from other examination modalities (if available) as additional input channels, enlarging the sample size, 

using dilated convolutions (Ouahabi and Taleb-Ahmed, 2021; Spuhler et al., 2019), loss function optimization methods (Ouahabi 

and Taleb-Ahmed, 2021), retraining the pre-trained network using the LD images taken at different noise levels to cope with 

various noise intensity situations in PET studies (Kang et al., 2017). More sophisticated frameworks (e.g., iterative deep learning 

networks, direct reconstruction networks, etc.) or other GAN variants such as Cycle GAN may help to take major steps forward in 

performance and worth exploring along this direction (Zhou et al., 2020). 

 

 

 

 

 

 Moreover, due to its miniaturized size, each tissue in mice spans just a limited number of slices. This made us to train the 

networks using all the slices encompassing the trunk and upper abdomen as it is impossible to design more specific models for each 

organ. When compared to clinical practices, strict ethical issues, rapid metabolism process, physiological motion, and relatively 

larger variations in tracer uptake patterns among animal models add even more to the complexity and scarcity of the sample size in 

the context of preclinical imaging. 

It is worth highlighting that we examined different setups and parameters to achieve the best scenario and optimum settings in 

our study. Since simple auto-encoders fail to converge at higher noise levels (Gondara, 2016), we faced several challenges when 

using basic CNNs and conventional U-Net architectures, including the appearance of severe checkboard artifacts, non-uniformities 

across the transaxial slices as well as resolution loss associated with standard CNNs. To mitigate these issues, we brought a number 

of modifications to the model to obtain a simple yet effective design for our target task. 

Recently, numerous DL-based strategies were established and implemented for noise reduction in different fields of biomedical 

imaging (Ouahabi and Taleb-Ahmed, 2021; Wang et al., 2021). However, choosing the best model for a specific task relies on 

different factors (e.g., number of training samples, corruption level or quality of the input dataset, number of input channels, 

availability of anatomical information, and etc.). Other setups could be applied for preclinical PET image denoising and will be 

explored in future studies. 

Given that the injected activity in small animal studies is much lower than in humans, herein, a dose reduction factor (DRF) of 

80% was chosen to yield LD PET scans. We examined various ratios to determine the lowest achievable DRF. We found that, in 

our case (considering the initial injected dose, animal weight, imaging protocol, scanner performance, and, axial FOV), DRFs < 

80% drastically alters the data composition in the LD mice images and leads to loss of texture information, which thwarts the 

learning process and impedes a meaningful mapping, particularly for the chest region. 

Another important point worth mentioning is that we decimated the LD images by randomly down-sampling the events collected 

during a standard-dose acquisition. We have examined the reliability of the approach through several phantom experiments before 

conducting this study. By decreasing the activity concentration by a factor of 5-6 (real LD condition), we obtained 20-25% of the 

true rates when imaging the same phantom in high-dose conditions. Given that voxel-wise alignment between separate LD and FD 

scans is difficult, if not impossible to achieve (owing to motion and differences in tracer distribution between two separate 

acquisitions), almost all studies, except a few in the context of LD PET imaging, followed the same procedure to simulate low-dose 
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conditions. 

V. CONCLUSION 

We investigated the feasibility of DL-enabled approaches to formulate standard-dose PET images from low-dose mice PET 

studies. A meaningful enhancement was found between LD images and those treated by different denoising techniques while the 

2.5D DL models (trained with either MAE loss or mixed adversarial loss) performed the best amongst all investigated methods. 

However, more heterogeneous samples are needed to prove the reliability of our conjecture but our findings at least hint on that DL 

enables a promising direction toward low-count small-animal studies without further need for expensive instrumentation or any 

error-prone post-processing steps. Compared to other conventional methods, DL brings a multitude of advantages not only in 

aspects of image quality, but also in terms of implementation, speed, and performance. 
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Highlights 

 Low-dose imaging is characterized by higher noise level, thus impacting image quality. 

 The feasibility of deep learning-based image denoising of low-count preclinical scenarios has never been 

reported in the literature. 

 We assessed the potential of various deep learning-based frameworks to generate full-dose small-animal 

PET scans from undersampled data. 

 Compared to other conventional methods, deep learning brings a multitude of advantages not only in 

aspects of image quality, but also in terms of implementation, speed, and performance. 
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Fig. 1. Schematic illustration of (a) proposed U-shaped model and (b) discriminator. The U-shaped model was used as the generator in the PTWGAN framework. 

 
 

 

 

 

Fig. 2. Training strategies used in this study. (a) 2D-RUNet: the model takes the target slice as input and predicts the 

corresponding residual map. (b) 2.5D-RUNet: The model takes three adjacent slices as input and predicts the residual map for the 

middle slice. (c) 2D-UNet: the model takes the target slice as input and directly predicts the FD image. (d) 2.5D-UNet: the model 

takes three adjacent slices as input and predicts the FD image for the middle slice. (e) PTWGAN: Generator takes 3 slices and 

predict the middle slice which then goes through the discriminator. 
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Fig. 3. The effect of the MAE term in PTWGAN on NRMSE. Values were calculated for the external test dataset. 

 
Fig.4. Representative PET images of the NEMA IQ phantom from uniform section (top) and hot rods (bottom). From left to right: a) actual LD, b) synthetic LD, 

c) FD images. 

 
Fig. 5. Comparison among U-Net models. From top to bottom: representative PET images of a mouse showing coronal, sagittal, and transverse views of 

abdominal section. From left to right: (a) noisy LD images, (b-e) predicted images with 2D-UNet, 2D-rUNet, 2.5D-UNet, 2.5D-rUNet respectively, (f) original FD 

image (ground-truth). The green arrows pinpoint to overestimations in gastrointestinal tract, Blue arrows: myocardium, Red arrows: stair-steps artifacts. 

 
Fig. 6. Comparison between U-Net and PTWGAN. From top to bottom: representative whole body PET images of a mouse from coronal, sagittal, and the 

transverse views from abdomen and liver, respectively. From left to right: (a) noisy LD images, (b) predicted images of U-Net, (c) predicted images of PTWGAN, 

and (d) original FD image (ground-truth). White arrows: kidney, Yellow arrows: pancreas, Green arrows: intestine, Black arrows: cranial part of duodenum 

recovered by PTWGAN. 

 

Jo
ur

na
l P

re
-p

ro
of



 

17 

 

Fig. 7. Comparison among different denoising methods. Representative whole body PET images of a mouse from coronal and sagittal views. From left to right: 

(a) noisy LD images, (b-d) denoised images with GF, ADF, and BMNLM, respectively, (e) DL (2.5D-rUNet) prediction, (f) original FD image (ground-truth). Red 

arrows: paraspinal region and the related artifacts, White arrows: uterine horn, Yellow arrows: blurred boundaries caused by GF around lateral lobe of liver and 

uterine horn of the kidney, Green arrows: underestimations in GI tract caused by traditional filtering which is recovered by DL methods 

 
Fig. 8. Comparison among different denoising methods. Representative PET images of a mouse from abdominal (top) and chest (bottom) sections. From left to 

right: (a) noisy LD images, (b-d) denoised images with GF, ADF, and BMNLM, respectively, (e) DL (2.5D-rUNet) prediction, (f) original FD image (ground-truth). 

Green arrows: gastrointestinal tract, Blue arrows: myocardium 

 
Fig. 9. Quantitative comparison among different denoising methods in the leave-one-group-out cross validation study. From left to right and top to bottom: 

NRMSE, NCC, SSIM, and PSNR. For each subject, values averaged across five realizations. Error bars indicate standard deviation. 
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Fig. 10. Joint histogram analysis of SUV for different denoising strategies. From left to right scatter and regression line plots for LD, GF, ADF, BMNLM, and 

DL(2D-RUNET) versus corresponding reference images. 
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