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Abstract
Objective We demonstrate the feasibility of direct generation of attenuation and scatter-corrected images from uncorrected
images (PET-nonASC) using deep residual networks in whole-body 18F-FDG PET imaging.
Methods Two- and three-dimensional deep residual networks using 2D successive slices (DL-2DS), 3D slices (DL-3DS) and 3D
patches (DL-3DP) as input were constructed to perform joint attenuation and scatter correction on uncorrected whole-body
images in an end-to-end fashion. We included 1150 clinical whole-body 18F-FDG PET/CT studies, among which 900, 100 and
150 patients were randomly partitioned into training, validation and independent validation sets, respectively. The images
generated by the proposed approach were assessed using various evaluation metrics, including the root-mean-squared-error
(RMSE) and absolute relative error (ARE%) using CT-based attenuation and scatter-corrected (CTAC) PET images as reference.
PET image quantification variability was also assessed through voxel-wise standardized uptake value (SUV) bias calculation in
different regions of the body (head, neck, chest, liver-lung, abdomen and pelvis).
Results Our proposed attenuation and scatter correction (Deep-JASC) algorithm provided good image quality, comparable with
those produced by CTAC. Across the 150 patients of the independent external validation set, the voxel-wise REs (%) were −
1.72 ± 4.22%, 3.75 ± 6.91% and − 3.08 ± 5.64 for DL-2DS, DL-3DS and DL-3DP, respectively. Overall, the DL-2DS approach
led to superior performance compared with the other two 3D approaches. The brain and neck regions had the highest and lowest
RMSE values between Deep-JASC and CTAC images, respectively. However, the largest AREwas observed in the chest (15.16
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± 3.96%) and liver/lung (11.18 ± 3.23%) regions for DL-2DS. DL-3DS and DL-3DP performed slightly better in the chest
region, leading to AREs of 11.16 ± 3.42% and 11.69 ± 2.71%, respectively (p value < 0.05). The joint histogram analysis resulted
in correlation coefficients of 0.985, 0.980 and 0.981 for DL-2DS, DL-3DS and DL-3DP approaches, respectively.
Conclusion This work demonstrated the feasibility of direct attenuation and scatter correction of whole-body 18F-FDG PET
images using emission-only data via a deep residual network. The proposed approach achieved accurate attenuation and scatter
correction without the need for anatomical images, such as CT and MRI. The technique is applicable in a clinical setting on
standalone PET or PET/MRI systems. Nevertheless, Deep-JASC showing promising quantitative accuracy, vulnerability to noise
was observed, leading to pseudo hot/cold spots and/or poor organ boundary definition in the resulting PET images.

Keywords PET/CT .Whole-body . Scatter correction . Attenuation correction . Deep learning

Introduction

18F-FDG PET imaging is commonly used for clinical diagno-
sis, staging, restaging and monitoring of response to treatment
in clinical oncology [1]. Quantitative and semi-quantitative
image–derived PET metrics, such as the standardized uptake
value (SUV), are used for non-invasive quantification of phys-
iological processes, providing valuable information for diag-
nosis and therapy monitoring of malignant diseases [2].

Good image quality is essential for pertinent qualitative
visual interpretation and accurate quantitative analysis of
18F-FDG PET images [3]. Compton scatter of one or both
annihilation photons, which undergoes interaction within
dense materials in the gantry (patient body, instrument bed,
detector and electronic components), results in a scatter frac-
tion of 30–35% and 50–60% of all recorded events in 3D
brain and whole-body PET data collection, respectively.
Scattered photons can be rejected by falling outside the
predetermined acceptance energy window (e.g. [435–
650 keV] on the considered PET scanner). These photons
are no longer relevant for scatter correction but still contribute
to attenuation events [4]. However, the wrong lines of re-
sponse (LORs) assigned following path change of scattered
photons (even LORs recorded outside the patient’s body)
within the acceptance energy window require scatter correc-
tion. Attenuation and scatter events result in local decrease
and increase in the number of detected counts, which lead to
underestimation and overestimation of the tracer uptake, re-
spectively, resulting in loss of image contrast and quantifica-
tion errors. The distribution and magnitude of scattered pho-
tons in non-attenuation and scatter corrected (PET-nonSAC)
images are to some extent dependent on the energy resolution,
sensitivity and time-of-flight capability of PET scanners.
Correction of physical degrading factors, such as Compton
scatter (SC) [4] and photon attenuation correction (AC) [5],
which can result in mislocation of loss of detected events, is
crucial. On commercial hybrid PET/CT scanners, SC can be
performed by modelling the scatter component based on at-
tenuation and uncorrected emission PET images. AC is also
performed by converting Hounsfield units in CT images to

linear attenuation coefficients at 511 keV. AC in PET/MRI
is still an open area of research since MRI provides informa-
tion about proton density which cannot be directly converted
to electron density [6]. To address this, various strategies have
been devised, including bulk segmentation of tissues from
different MR sequences into a predefined number of classes
[7, 8], atlas-based methods [9] and emission-based methods
that are capable of direct estimation of attenuation maps from
emission data [10, 11]. While some of these methods proved
promising for AC in PET/MRI, segmentation and atlas-based
techniques are limited by tissue misclassification, intra-subject
co-registration between CT and MR images, truncation or
metal-induced artefacts and by the presence of anatomical
abnormalities. As such, AC remains a significant and nontriv-
ial challenge in PET/MRI [6].

Deep learning algorithms have been developed for various
medical image analysis applications [12]. Pioneering efforts
have successfully applied deep convolutional networks to var-
ious tasks, including image denoising [13], resolution recov-
ery [14] and image reconstruction [15]. Multiple studies ex-
plored the suitability of deep learning approaches for cross-
modality transformation from MRI to CT images [16] and
vice-versa [17], as well as in AC of PET data [18–20].
Recent works focused on the generation of pseudo-CT images
from T1-weighted [16, 21, 22], ultra-short echo time (UTE)
[23], zero echo time (ZTE) [24] and Dixon [25] MR se-
quences for AC of 18F-FDG PET images in the brain and
pelvic regions. Two closely related but independent works
reported on the direct conversion of non-attenuation corrected
brain 18F-FDG PET images to the attenuation corrected image
using convolutional encoder-decoder neural networks [20,
26].

Interest in simultaneous maximum likelihood reconstruc-
tion of attenuation and activity (MLAA) based on emission
data was revived with the introduction of time-of-flight (TOF)
PET [10, 27]. However, these algorithms are limited by insuf-
ficient coincidence time resolution, which leads to positional
uncertainty [28], ill-posedness of the problem and high noise
levels, which result in slow convergence and inaccurate esti-
mations. Recent studies proposed to generate pseudo-CT AC
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maps through the application of deep learning to the output of
joint activity and attenuation estimation in brain and whole-
body PET imaging in an attempt to address the limitation of
the MLAA [29, 30]. In addition, recently proposed methods
that generate pseudo-CT images from MRI are limited by the
need for co-registered pairs of CT and MRI images for the
training phase. Suchmethods also require cross-modality con-
version in the image space (e.g. from a proton density (MRI)
to an electron density (CT)) [6].However, more recently MRI
to CT transformation using unpaired data was also reported
[31].

Previous works aiming at direct attenuation and scatter cor-
rection in image space focused mostly on brain imaging
resulting in a promising performance with clinically tolerable
errors owing to the rigidity of structures within the head and
minor inter-patient variability [20, 26]. More recent indepen-
dent work focused on application of this approach in whole-
body imaging demonstrated promising reliability and quanti-
tative accuracy using a limited number of training/test datasets
[32]. However, the application of this approach in whole-body
imaging warranted a thorough investigation of potential out-
liers owing to large inter-patient anatomical and posture var-
iability and physiological motion. As such, this study sets out
to investigate the potential of this approach using a large sam-
ple size through the assessment of outliers and to provide
some insight into its potential to handle respiratory motion
artefacts. The objective of this work is to demonstrate the
feasibility of the direct generation of attenuation and scatter
corrected images from non-attenuation and scatter corrected
(PET-nonASC) images in whole-body 18F-FDG PET imaging
without the use of anatomical information using an
unprecedently large sample size for training, test and valida-
tion. This is achieved using a framework involving the use of a
deep residual convolutional neural network for joint attenua-
tion and scatter correction (Deep-JASC).

Materials and methods

PET/CT data acquisition

This retrospective study was approved by our institutional
review board and informed consent was obtained from all
patients (ethic number REC.1397.095, Tehran University of
Medical Sciences). Clinical whole-body 18F-FDG PET/CT
studies of 1388 patients acquired between 2016 and 2018 on
a Siemens Biograph 6 True point scanner. Two hundred
thirty-eight patients were excluded from this study owing to
technical or logistic issues (artefacts, missing CT and/or PET-
nonASC images). The patients were injected with an activity
of 370 ± 49 MBq of 18F-FDG and scanned 60 ± 13 min post-
injection. Detailed patient demographics are given in Table 1
for training, validation and external validation datasets. A

low-dose CT scan (110 kVp, 145 mAs) was performed prior
to PET data acquisition for attenuation correction. Scatter cor-
rection was performed only on PET-CTAC images using the
single-scatter simulation (SSS) algorithm with two iterations
[33]. In Siemens Biograph 6 True Point, the energy resolution
is ~ 12% at 511 keV and the energy window set to 425–
650 keV. The SSS algorithm estimates the scatter component
for each LOR only for single Compton scattering [33].
Analytical calculations using the Klein-Nishina equation pro-
vide an estimation of the contribution of scattered photons to
each LORwhere the total amount (distribution) of single scat-
tering is determined from the superposition of the estimations.
The total scatter fraction is determined though tail fitting of the
estimated scatter distribution to scattered photons outside the
body contour. Random, dead-time, decay, normalization cor-
rections were applied prior to point-spread function (PSF)–
based image reconstruction for both PET-nonASC and
CTAC images. PET images were reconstructed using the or-
dinary Poisson ordered subsets-expectation maximization
(OP-OSEM) algorithm with 2 iterations and 21 subsets
fo l lowed by wi th 5-mm FWHM Gauss ian pos t -
reconstruction smoothing. All images were reconstructed into
a 168 × 168 matrix and cropped to 154 × 154 matrix (exclud-
ing empty regions on both sides) with a voxel size of 4.073 ×
4.073 × 3 mm2. Both reference CT, CT-based attenuation/
scatter-corrected (PET-CTAC) and PET-nonASC images
were archived for all patients.

Data preparation

The 1150 whole-body 18F-FDG PET studies included in this
work were randomly divided into training (900), validation
(100) and independent validation (150) datasets. Evaluation
of the proposed algorithm was performed using the unseen
external validation set. These images were not used within
the training or evaluation of the network. In the first step, the
voxel intensities in the whole dataset consisting of 1150 PET-
CTAC and PET-nonASC images were converted to standard-
ized uptake values (SUVs) to reduce the dynamic range of the
intensity of PET images. Moreover, to further reduce the dy-
namic range of the voxel intensities for the sake of effective
training of the network, PET-CTAC images were normalized
with an empiric factor equal to 9 determined from the images.
Likewise, PET-nonASC images were normalized with a fac-
tor equal to 3.

Deep-JASC network architecture

The residual network (ResNet) [34] proposed in the Python
library of Niftynet pipeline [35], built upon TensorFlow (ver-
sion 1.12.) [36], was used to implement Deep-JASC algo-
rithm. ResNet is composed of 20 convolutional layers where
a 3 × 3 × 3-voxel convolution kernel is used in the first seven
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layers. These layers extract low-level features, for instance
edges, from the input data. The next seven layers employ the
dilated convolution kernel by a factor of two to encode the
medium-level features from the input. The last six layers also
increase the dilation of the convolution kernel by 4, in addition
to the previous layers, to enable capturing high-level features
(Fig. 1A). A residual connection links every two
convolutional layers. A batch normalization and element-
wise rectified linear unit (ReLU) is connected to the
convolutional layers located in the residual blocks.

Implementation details

The training of the Deep-JASCwas performed using 900 pairs
of PET-nonASC and PET-CTAC images as input and output,
respectively. To this end, the Deep-JASC model training re-
peated three times in 2D mode using successive slices (DL-
2DS), anisotropic 3D mode extended across several slices
(DL-3DS) and isotropic 3D mode using a fixed patch size of
64 × 64 × 64 (DL-3DP) (Fig. 1B). For DL-2DS training, a 2-
dimensional (2D) spatial window equal to 154 × 154 voxels
and batch size of 30 were set. For the DL-3DS mode, a spatial
window of 154 × 154 × 32 voxels and a batch size of 2 were
selected. For the DL-3DP mode, a spatial window equal to
64 × 64 × 64 voxels and a batch size of 4 were set. The same

settings were used for the three training modes as follows:
learning rate = 0.001, sample per volume = 1, optimizer =
Adam, loss function = L2norm and decay = 0.0001. During
the training process, 10% of the training dataset was devoted
to evaluation within the training of the model to verify the
possibility of overfitting. Insignificant differences between
the evaluation and training losses (errors) were observed for
the three modes of training, which indicates no risk of
overfitting. Decay factor refers to the regularization imposed
on the trainable parameters. To this end, a ridge regression
scheme using the following formula was utilized to prevent
overfitting.

Loss regularizedð Þ ¼ Loss originalð Þ þ λ� sum wð Þ2 ð1Þ
where λ is the decay factor (λ = 0.0001) and w is an array
containing the entire trainable parameters. In addition, the
training was started with a learning rate equal to 0.005 and
for the last 2 epochs, the learning rate was reduced to 0.

Evaluation strategy

Qualitative and quantitative evaluation of the proposed frame-
work was performed using an independent external validation
set consisted of 150 patients. The image quality of the

Table 1 Patient demographics of
clinical whole-body PET/CT
studies enrolled in this study
protocol

Data set Parameters No. Mean std Min 25% 50% 75% Max

Training Injected activity
(MBq)

900 373 48.80 123 348 377 400 555

Validation 100 372 52.52 139 352 374 400 481

External
validation

150 368 40.29 170 352 370 392 470

Training Weight (kg) 900 73 15.56 27 62 72 82 145

Validation 100 75 16.06 42 65 73 82 138

External
Validation

150 73 13.31 25 63 74 81 113

Training Time post-injection
(min)

900 61 6.61 46 57 60 65 89

Validation 100 60 6.31 48 56 59 64 86

External
Validation

150 62 5.92 49 58 61 65 77

Training Age (year) 900 50 16.55 10 36 52 62 87

Validation 100 47 16.56 13 34 48 62 83

External
Validation

150 48 15.61 11 35 49 62 78

Training Male 446 Lymphoma (36.8%), colorectal (18.6%), lung (14.4%),
head and neck (12.9%), other (12.6%), no metabolic
abnormalities (4.7%)

Female 454

Validation Male 51 Lymphoma (35.1%), colorectal (12.7%), lung (18.4%),
head and neck (13.7%), other (11.2%), no metabolic
abnormalities (8.9%)

Female 49

External
validation

Male 69 Lymphoma (37.1%), colorectal (14.1%), lung (13.4%),
head and neck (13.7%), other (13.6%), no metabolic
abnormalities (8.1%)

Female 81
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generated images was assessed using the following metrics
using PET-CTAC images as a reference for evaluation.

Voxel-wise mean error (ME), mean absolute error (MAE),
relative error (RE%) and absolute relative error (ARE%) were
calculated between reference PET-CTAC and predicted PET
images for the three training modes, namely DL-2DS, DL-
3DS and DL-3DP.

ME ¼ 1

vxl
∑
vxl

v¼1
PETPredicted vð Þ−PETref vð Þ ð2Þ

MAE ¼ 1

vxl
∑
vxl

v¼1
PETpredicted vð Þ−PETref vð Þ�
�

�
� ð3Þ

RE %ð Þ ¼ 1

vxl
∑
vxl

v¼1

PETpredicted

� �

v− PETrefð Þv
PETrefð Þv

� 100% ð4Þ

ARE %ð Þ ¼ 1

vxl
∑
vxl

v¼1

PETpredicted
� �

v− PETref
� �

v

PETref
� �

v

�
�
�
�
�

�
�
�
�
�
� 100% ð5Þ

Here, PETpredicted stands for PET images corrected for
attenuation/scatter using Deep-JASC whereas PETref stands
for the reference PET-CTAC images. Vxl and v denote the
total number of voxels and voxel index, respectively.

Moreover, the root mean square error (RMSE), structural
similarity index (SSIM) [37] and peak signal-to-noise ratio
(PSNR) were calculated to assess the quality of the predicted
PET images using Eqs. 6–8.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

vxl
∑
vxl

v¼1
PETpredicted ið Þ−PETref ið Þ� �2

s

ð6Þ

PSNR dBð Þ ¼ 10log10
Peak2

MSE

� �

ð7Þ

SSIM ¼ 2AverefAvepredicted þ C1

� �

2δref ;predicted þ C2

� �

Ave2ref þ Ave2predicted þ C1

� 	

δ2ref þ δ2predicted þ C2

� 	 ð8Þ

In Eq. (7), peak denotes the maximum intensity of either
PETref or PETpredicted whereas MSE indicates the mean
squared error. In Eq. (8), Averef and Avepredicted stand for the
mean value of PETref and PETpredicted, respectively. δref and
δpredicted denote the variances and δref,predicted the covariances
of PETref and PETpredicted images, respectively. The constants
(C1 = 0.01 and C2 = 0.02) were set to avoid division by very
small values. The quantitative assessment of the proposed
techniques was performed separately for the whole-body and
for different regions of the body, namely the head, neck, chest,
lung/liver, abdomen and pelvis as (Supplemental Figure 1).
The lung/liver region contains slices from the liver dome until
the end of the lungs. This region was reported separately since
most respiratory motion errors/artefacts occur in this region.

Moreover, the performance of Deep-JASC was further in-
vestigated through the analysis of different types of malignant
lesions delineated manually on 150 patients in the test dataset.
To this end, volumes of interests (VOIs) were manually de-
fined on lesions depicted on PET-CTAC images and copied
on the corresponding predicted PET images. Conventional
PET quantitative parameters, including SUVmax and
SUVmean as well as histogram-based, second- and high-order
texture features were extracted from the VOIs defined on the
lesions. For patients lacking metabolic abnormalities, a 3 cm2

VOI was defined on the liver to extract the abovementioned

Fig. 1 (A) Architecture of the deep residual network (Deep-JASC) and
implementation framework employed in the present study. (B) The train-
ing of the network was repeated three times: (left) in 2D slice-by-slice

mode (DL-2DS), (middle) anisotropic 3D mode extended across several
slices (DL-3DS) and (right) isotropic 3Dmode using a fixed patch size of
64 × 64 × 64 (DL-3DP)
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features. Overall, 171 VOIs form 150 patients (external vali-
dation) were extracted for further analysis. A detailed descrip-
tion of the radiomics features is provided in Supplemental
Table 1. The relative errors (REs%) were calculated between
features extracted from reference PET-CTAC and Deep-
JASC images using Eq. 9.

RE %ð Þ ¼ PETpredicted

� �

VOI− PETrefð ÞVOI
PETrefð ÞVOI

� 100 ð9Þ

Paired-sample t test was used for statistical analysis to com-
pare the image-derived metrics between the different training
modes. The significance level of p values was set to 0.05 for
all comparisons. Moreover, a joint histogram analysis (with
Pearson correlation) was performed to display the distribution
of voxel-wise PET SUV correlation between the Deep-JASC
approaches and reference PET-CTAC for a SUV range of 0.1
to 18 in 200 bins.

Results

Figure 2 provides head-to-head comparison of a representa-
tive clinical example of PET-nonASC, PET-CTAC, PET-DL-
2DS, PET-DL-3DS and PET-DL-3DP images as well as dif-
ference SUV maps with respect to reference PET-CTAC im-
age. As shown in Fig. 2, Deep-JASC provides image quality
comparable with PET-CTAC. Quantification errors can be
observed in the chest region and in regions with high hetero-
geneity and complexity, such as the liver, bones, soft tissues
and air. The DL-2DS method provided overly better image
quality and quantitative accuracy compared with the two 3D
methods. A comparison of horizontal profiles drawn through a
lesion in the lung between PET-CTAC (reference) and the
three synthesized PET images is also shown. The profiles of
the PET-CTAC and Deep-JASC images match each other in
both high and low activity areas of the chest region of lung
cancer patients. Supplemental Figure 2 shows maximum in-
tensity projections of PET-CTAC and the three different
Deep-JASC algorithms of ten randomly selected patients.

The comparisons of image quality metrics computed on
SUV images (mean ± SD) including ME, MAE, voxel-wise
RE (%), voxel-wise ARE (%), SSIM, PSNR, and RMSE be-
tween the different methods (DL-2DS, DL-3DS and DL-3DP)
for different regions in the body are summarized in Table 2.
Supplemental Tables 2–4 provide the p values for compari-
sons of the three Deep-JASC techniques in different body
regions. Across the 150 patients of the independent external
validation set, the voxel-wise REs (%) were − 1.72 ± 4.22%,
3.75 ± 6.91% and − 3.08 ± 5.64 for DL-2DS, DL-3DS and
DL-3DP, respectively.

The DL-2DS method led to lower RE (%) compared with
both DL-3DS and DL-3DP approaches (p values = 0.01 and

0.03, respectively). In the DL-2DS technique, the lowest and
highest REs (%) were 0.5 ± 5.04% in the neck region and −
4.7 ± 4.02% in the lung region, respectively. For DL-3DS, the
lowest and highest REs (%) were 0.41 ± 6.86 in the lung-liver
and 5.81 ± 4.85 in the pelvic region, respectively. The RE (%)
decreased significantly for DL-2DS (1.25 ± 2.51%) in the pel-
vis region (p value < 0.05).

The average ME and ARE (%) for DL-2DS attenuation/
scatter corrected images were − 0.02 ± 0.06 and 11.61 ±
4.25%, respectively. The DL-3DP, DL-3DS, and DL-2DS
techniques ranked from the highest to lowest in terms of
ARE (%) and MAE metrics. The DL-2DS, DL-3DS and
DL-3DP approaches led to PSNR of 34.59 ± 3.28, 34.24 ±
3.44 and 34.09 ± 3.32 and SSIM of 0.96 ± 0.03, 0.95 ± 0.03,
and 0.95 ± 0.03, respectively. However, the differences be-
tween these results were not statistically significant (Table 2).

The quantitative evaluation of PET images was conducted
by voxel-wise comparisons of tracer uptake (SUV) within the
body contour. Figure 3 compares the box plots of ARE, RE,
MAE and RMSE, SSIM, PSRN, respectively, of the various
methods within different regions of the body (box plot of ME
is provided in Supplemental Figure 3). The lowest RMSE
(0.22 ± 0.08) and MAE (0.22 ± 0.09) were achieved by DL-
2DS.

Figure 4 depicts the heat map of REs (%) calculated on 17
radiomics features for different types of cancer in Deep-JASC
PET images. Table 3 summarizes the mean ± SD of radiomics
features for different Deep-JASC approaches, wherein REs of
SUVmean of − 2.54 ± 2.36%, − 1.75 ± 4.02% and − 5.03 ±
3.05% were obtained for 2DS, 3DS and 3DP approaches,
respectively. 2DS and 3DS approaches resulted in mean REs
of less than 5% for all radiomics features, while 3DP led to
REs of − 5.03 ± 3.05%, − 5.27 ± 3.22% and − 5.24 ± 2.98%
for SUVmean, Q1 and Q2 from histogram features, respective-
ly. Supplemental Tables 5–7 present details of RE% (mean ±
SD) calculated for different radiomics features and different
cancer types in Deep-JASC PET images.

The joint histogram analysis exhibited voxel-wise similar-
ity between reference CTAC and Deep-JASC attenuation and
scatter correction techniques with slopes of 0.98, 1.05 and
1.02 for DL-2DS, DL-3DS and DL-3DP, respectively
(Fig. 5). Moreover, the DL-2DS approach showed higher cor-
relation (R2 = 0.985) compared with DL-3DS and DL-3DP
(R2 = 0.980 and R2 = 0.981, respectively). Overall, DL-2DS
exhibited smaller variation across the whole range of SUVs
compared to the two 3D methods. However, for lower uptake
voxels, DL-3DP showed comparable performance (variation)
to the DL-2DS approach.

Figure 6 shows an example of PET-CTAC affected by
noticeable respiratory motion owing to the local mismatch
between PET-nonASC and CT images in the liver dome re-
gion. This mismatch led to large discrepancies between PET-
CTAC and PET-nonASC that was reasonably well recovered
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Fig. 2 Comparison of coronal views of the PET images corrected for
attenuation/scatter using Deep-JASC approach. (A) CT, (B) PET-
CTAC, (C) PET-nonASC, (D) PET-DL-2DS, (E) PET-DL-3DS, (F)
PET-DL-3DP and the difference bias maps (G) PET-DL-2DS – PET-

CTAC, (H) PET-DL-3DS – PET-CTAC, (I) PET-DL-3DP – PET-
CTAC. The plot shows SUV profiles drawn through a lung lesion on
the four PET images
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by the Deep-JASC approach. Overall, despite the promising
results achieved by the Deep-JASC approach, pseudo hot and
cold spots were observed in Deep-JASC PET images in some
of the cases in the independent validation dataset (150 pa-
tients). One such example is illustrated in Fig. 7 showing
CT, PET-nonASC, PET-CTAC, PET-DL-2DS, PET-DL-
3DS and PET-DL-3DP images as well as different SUVmaps
relative to PET-CTAC. A similar pseudo hot uptake appeared
in the abdomen for the three Deep-JASC images where the
line profiles drawn on the hot spot show the level of local SUV
overestimation in Deep-JASC images compared with the ref-
erence PET-CTAC. Supplemental Figures 4–6 show repre-
sentative examples wherein Deep-JASC failed to identify un-
derlying structures (Supplemental Figure 4), to pinpoint le-
sions (Supplemental Figure 5) due to high levels of noise in
PET-nonASC images, or cause artefact-like pseudo structures
(Supplemental Figure 6).

Among the different Deep-JASC approaches, DL-2DS result-
ed in the lowest SUV error metrics (RMSE= 0.22 ± 0.08, RE =
− 1.72 ± 4.22%and SSIM= 0.96 ± 0.03). The highest error met-
rics (ARE = 15.16 ± 3.96%, lowest PSNR = 31.7 ± 2.52 and
SSIM = 0.93 ± 0.03) were observed in the chest region.
Regarding 3D implementations of Deep-JASC, ARE decreased
significantly for DL-3DS (11.16 ± 3.42%, p value < 0.05) and
DL-3DP (11.69 ± 2.71, p value < 0.05) approaches, respectively.

Discussion

The aim of the present work was to demonstrate the feasibility
of the direct generation of attenuation/scatter-corrected whole-
body 18F-FDG PET images from uncorrected images without
using anatomical information. The evaluation of the proposed
methods was performed on an independent validation set
consisting of 150 patients using established quantitative im-
aging metrics. SUV quantification in the generated SC/AC
images was highly reproducible.

Attenuation patterns in the chest region are different from
other regions in PET-nonASC images. Lung tissue appears
brighter in contrast to other regions of the body, whereas areas
closer to the skin appear brighter and areas closer to the center
appear darker in PET-nonASC images. The biasmaps showed
the highest error in the chest and liver regions owing to their
higher heterogeneity (soft tissue, lung, air, bone and ribs). In
addition, slight respiratory motion, causing local miss-match
between PET and CT images, added to the complexity of this
regionwhich led to a higher relative error compared with other
regions, including the brain, pelvis and abdomen. Prior to
training, pairs of PET images suffering from low quality were
removed from the training/test datasets. The causes of poor
image quality were mostly gross patient motion within PET
images (blurring) and miss-match between CT and PET

Table 2 Image quality metrics reflecting quantitative accuracy of the estimated tracer uptake within different regions of the body for the images
generated using DL-2DS, DL-3DS and DL-3DP SC/AC approaches

Regions ME MAE RMSE RE (%) ARE (%) SSIM PSNR

3DP_Brain − 0.04 ± 0.16 0.53 ± 0.08 0.31 ± 0.09 − 0.62 ± 7.02 17.61 ± 5.15 0.95 ± 0.03 35.03 ± 2.99

3DS_Brain 0.11 ± 0.20 0.45 ± 0.14 0.28 ± 0.13 3.09 ± 9.31 14.47 ± 7.37 0.96 ± 0.03 35.30 ± 3.00

2DS_Brain − 0.01 ± 0.04 0.34 ± 0.09 0.27 ± 0.10 − 1.37 ± 4.29 13.09 ± 4.47 0.97 ± 0.02 36.00 ± 2.93

3DP_Neck 0.08 ± 0.07 0.31 ± 0.04 0.16 ± 0.04 − 1.23 ± 6.17 13.5 ± 4.92 0.95 ± 0.03 35.10 ± 2.33

3DS_Neck 0.08 ± 0.08 0.19 ± 0.05 0.18 ± 0.05 5.14 ± 6.64 12.3 ± 5.82 0.96 ± 0.03 35.21 ± 2.52

2DS_Neck 0.00 ± 0.04 0.17 ± 0.04 0.17 ± 0.05 0.50 ± 5.04 11.18 ± 5.20 0.97 ± 0.02 35.90 ± 2.63

3DP_Chest 0.02 ± 0.08 0.16 ± 0.04 0.20 ± 0.07 − 1.01 ± 3.03 11.69 ± 2.71 0.92 ± 0.03 31.13 ± 2.69

3DS_Chest 0.03 ± 0.09 0.18 ± 0.05 0.21 ± 0.07 2.54 ± 5.61 11.16 ± 3.42 0.92 ± 0.03 31.20 ± 2.79

2DS_Chest −0.01 ± 0.09 0.29 ± 0.05 0.22 ± 0.07 − 4.70 ± 4.02 15.16 ± 3.96 0.93 ± 0.03 31.70 ± 2.52

3DP_Lung/Liver −0.10 ± 0.11 0.43 ± 0.08 0.25 ± 0.08 − 8.1 ± 5.05 14.68 ± 3.26 0.93 ± 0.03 31.80 ± 2.73

3DS_Lung/Liver −0.03 ± 0.14 0.26 ± 0.07 0.24 ± 0.09 0.41 ± 6.86 12.22 ± 3.64 0.94 ± 0.03 32.01 ± 3.31

2DS_Lung/Liver −0.06 ± 0.08 0.23 ± 0.06 0.24 ± 0.07 − 2.02 ± 4.27 11.18 ± 3.23 0.94 ± 0.03 31.91 ± 2.49

3DP_Abdomen 0.03 ± 0.08 0.31 ± 0.06 0.22 ± 0.06 − 4.42 ± 3.75 10.96 ± 2.37 0.97 ± 0.02 35.61 ± 2.70

3DS_Abdomen 0.07 ± 0.10 0.20 ± 0.05 0.23 ± 0.06 5.51 ± 5.69 10.36 ± 2.68 0.97 ± 0.02 35.70 ± 2.61

2DS_Abdomen −0.02 ± 0.05 0.16 ± 0.04 0.22 ± 0.05 − 1.49 ± 2.89 8.72 ± 2.06 0.97 ± 0.02 35.91 ± 2.54

3DP_Pelvis 0.06 ± 0.07 0.28 ± 0.05 0.24 ± 0.08 −3.10 ± 3.82 10.22 ± 1.80 0.97 ± 0.02 35.90 ± 2.91

3DS_Pelvis 0.09 ± 0.08 0.17 ± 0.04 0.27 ± 0.09 5.81 ± 4.85 10.31 ± 2.52 0.97 ± 0.02 36.00 ± 2.97

2DS_Pelvis 0.00 ± 0.04 0.14 ± 0.03 0.23 ± 0.07 − 1.25 ± 2.51 7.54 ± 1.41 0.97 ± 0.02 36.10 ± 2.67

3DP_WB 0.01 ± 0.12 0.34 ± 0.13 0.23 ± 0.08 − 3.08 ± 5.64 13.11 ± 4.38 0.95 ± 0.03 34.09 ± 3.32

3DS_WB 0.06 ± 0.13 0.24 ± 0.12 0.23 ± 0.09 3.75 ± 6.91 11.8 ± 4.80 0.95 ± 0.03 34.24 ± 3.44

2DS_WB −0.02 ± 0.06 0.22 ± 0.09 0.22 ± 0.08 − 1.72 ± 4.22 11.61 ± 4.25 0.96 ± 0.03 34.59 ± 3.28

Eur J Nucl Med Mol Imaging



images. In some cases, belonging to the external validation set
(Fig. 6), one can observe a large difference between PET
images generated using Deep-JASC and CTAC in the lung
region and the liver dome. The mismatch between PET and
CT images induced by respiratory motion in the lung and
upper abdomen cause artefacts in PET-CTAC images. In
Deep-JASC, attenuation and scatter corrections are performed

using only emission data without the use of anatomical im-
ages, such as CT and MRI. Therefore, Deep-JASC is less
vulnerable to mismatch artefacts in the chest and upper abdo-
men, which partly explains the difference between Deep-
JASC and CTAC PET images in these regions. Even though
large ARE (%) and RE (%) were observed in the chest region,
partly due to the division by very small SUV values, the
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Fig. 3 Comparison of (A) absolute relative errors (ARE), (B) relative
errors (RE%), (C) mean absolute errors (MAE), (D) root mean-square
errors (RMSE), (E) peak signal to noise ratio (PSNR) and (F) structural
similarity index (SSIM) obtained in different body regions when using

DL-2DS, DL-3DS and DL-3DP SC/AC approaches. The box plots dis-
play the intraquartile range (IQR), minimum (Q1–1.5 × IQR), first quar-
tile (Q1), median, third quartile (Q3), maximum (Q3 + 1.5 × IQR) and
outliers
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absolute SUV differences between the predicted PET images
and reference PET-CTAC images are comparable with those
obtained in other regions. Previous whole-body PETAC stud-
ies showed SUV bias in lung lesions up to 15% when using
atlas-based methods and over 20% when using segmentation-
based [7, 38].

Despite the large anatomical intra- and inter-patient vari-
ability, the spatial distribution of the scatter component in PET
images follows commonly a smooth variation across slices
and/or regions. As such, the scatter patterns are not much
affected in the chest region. Moreover, the scatter fraction,
estimated via the tail fitting approach, is commonly

regularized over the axial coverage to ensure smooth scatter
pattern changes. Therefore, although large anatomical varia-
tions exist in this region, the scatter patterns do not change
drastically across the patients and through the different
regions.

The results demonstrated that training in 2D mode led to
superior (or at least slightly better) performance compared
with the two 3D training modes. Three different methods,
namely 2D slices (low computation burden, large data size
with high variability, AC/SC performed in 2D), 3D slices
(considering the 3D volume and include different information
from sagittal and coronal planes, which allows a better

Fig. 4 Heat map depicting
relative errors of 17 radiomics
features extracted from 171 VOIs
of 150 patients (external
validation) across different cancer
types for PET-DL-2DS, PET-DL-
3DS and PET-DL-3DP images
versus reference PET-CT images
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continuity of image intensity in the axial direction) and 3D
patches (seeing the different structures in different FOVs),
were considered for implementation of Deep-JASC.
Nevertheless, the 3D approaches provided better results in
highly heterogeneous regions, such as the lung region owing
to the inclusion of information from neighbouring slices. The
training dataset in 2D mode is markedly larger that in 3D
mode, which might partly explain its better performance. In
addition, 3D training mode may also complicate the learning/
convergence process of regression and consequently results in
sub-optimal performance. 3D training dramatically increases
the number of trainable parameters, subsequently complicat-
ing the optimization process to converge to a global minima
loss. It should be noted that the training of datasets for a

specific body region may improve the quality of the outcome.
Dividing the body into a number of sub-regions for training is
an option to consider to enhance the performance of the Deep-
JASC approach. In addition, hybrid 3D and 2D training might
result in overall enhanced performance, for instance in the
lung region where 3D implementations outperformed the 2D
one.

Deep learning techniques were previously reported for
cross-modality transformation from MRI to CT for MRI-
only guided radiation therapy and AC in PET/MRI.
Dedicated (UTE/ZTE)MR sequences require long acquisition
time to generate an appropriate attenuation map, rendering
these methods impractical for whole-body imaging. Hwang
et al. [30] proposed a deep learning–based synthetic CT gen-
eration which the input to this network is the attenuation map
estimated from MLAA reconstruction in brain imaging. They
reported the average voxel-wise RE 12.82% ± 2.45%, 5.61%
± 0.68% and 2.05% ± 1.51% for MLAA based AC, four
segment-based AC and deep learning–based AC, respective-
ly. Shi et al. [39] proposed a line-integral projection loss (LIP-
loss) function that incorporates the physics of PET attenuation
into attenuation map generation. They reported a MAE of
21.4%, 7.8%, 9.4%, 9.2% and 11.26% for MLAA; 3.5%,
4.2%, 4.8%, 4.4% and 4.1% for the deep learning method;
and 3.2%, 3.7%, 4.1%, 3.6% and 3.6% for Deep-LIP in the
head, neck/chest, abdomen, pelvis and whole-body regions,
respectively. Despite the promising results, pseudo-CT syn-
thesis fromMRI for AC faces a number of challenges [24, 40,
41], including mismatch between MRI and PET images, in-
ternal organ displacements and the lack of direct relationship
between proton density and electron density [6]. To address
these challenges, our proposed method performs direct AC
from emission data only. This approach is less vulnerable to
the challenges of pseudo-CT synthesis and is applicable to
standalone PET scanners and PET/MRI systems.

Van Hemmen et al. [42] applied a deep convolutional
encoder-decoder (CED) network using a U-Net architecture for
whole-body PET attenuation correction and reported an ARE of

Fig. 5 Joint histogram analysis displaying the correlation between activity concentration in PET- DL-2DS, PET- DL-3DS and PET- DL-3DP images
and versus reference PET-CT image. Note that a logarithmic scale was used to display the SUV levels

Table 3 Summary of the REs (%) of radiomics features extracted from
171 VOIs of 150 patients (external validation) for the different deep
learning–based approaches with respect to PET-CTAC

Quantitative parameters 2DS 3DS 3DP

SUVmean − 2.54 ± 2.36 − 1.75 ± 4.02 − 5.03 ± 3.05

SUVmax − 1.25 ± 4.28 − 1.21 ± 5.84 − 3.83 ± 4.90

HISTO_Q1 − 2.74 ± 2.71 − 1.73 ± 4.06 − 5.27 ± 3.22

HISTO_Q2 − 2.69 ± 2.47 − 1.86 ± 4.08 − 5.24 ± 2.98

HISTO_Q3 − 2.48 ± 2.58 − 1.73 ± 4.33 − 4.91 ± 3.21

HISTO_kurtosis 0.66 ± 4.53 0.11 ± 3.97 0.67 ± 4.63

HISTO_entropy 0.20 ± 1.37 0.24 ± 1.31 0.18 ± 1.31

HISTO_energy − 1.08 ± 5.51 − 1.27 ± 5.16 − 0.93 ± 5.52

GLCM_homogeneity 0.03 ± 2.98 0.08 ± 2.62 0.15 ± 2.75

GLCM_energy − 2.03 ± 8.78 − 2.0 ± 7.92 − 1.64 ± 8.68

GLCM_correlation 0.67 ± 1.96 0.66 ± 1.71 0.39 ± 1.57

GLCM_entropy 0.29 ± 1.64 0.27 ± 1.54 0.24 ± 1.53

GLRLM_SRE 0.08 ± 0.36 0.07 ± 0.33 0.05 ± 0.32

GLRLM_LRE − 0.92 ± 3.26 − 0.87 ± 3.18 − 0.83 ± 3.2

GLRLM_RP 0.34 ± 1.66 0.32 ± 1.58 0.3 ± 1.53

GLZLM_SZE − 0.56 ± 1.46 − 0.34 ± 1.36 − 0.53 ± 1.29

GLZLM_ZP − 0.42 ± 2.44 − 0.55 ± 2.0 − 0.76 ± 2.08
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Fig. 6 Case report of a clinical PET/CT study suffering from mismatch
between PET and CT images owing to respiratory motion reflected in the
PET-CTAC images that was partially compensated by PET images
corrected using deep learning-based SC/AC approach. (A) CT, (B)
PET-CTAC, (C) PET-nonASC, (D) PET-DL-2DS, (E) PET-DL-3DS,

(F) PET-DL-3DP and the difference bias maps (G) PET-DL-2DS –
PET-CTAC, (H) PET-DL-3DS – PET-CTAC and (I) PET-DL-3DP –
PET-CTAC. The plot shows SUV profiles drawn through the pseudo
hot spot
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~ 30% for 10 subjects. Yang et al. [43] applied 3D generative
adversarial networks for attenuation and scatter correction of
whole-body PET images reporting an average ME and MAE
in whole-body imaging of 2.49% ± 7.98% and 16.55% ±
4.43%, respectively, in a population of 30 patients. More recent-
ly, Dong et al. [32] proposed a deep learning approach for whole-
body PET AC in the absence of structural information. They
reported an average ME of 13.84% ± 10.11%, 13.42% ±
10.13% and − 17.02% ± 11.98% in the lung and 2.05% ±
2.21%, 2.25%± 1.93% and 0.62%± 1.26% in whole-body im-
aging for U-Net, GAN and cycle-GAN, respectively. Reliable
assessment of deep learning algorithms requires a large dataset
for training and validation, allowing for proper interpretation of
the results and robustness to outliers. In the present study, we
used an unprecedently large sample size of training, test and
validation dataset for reliable assessment of Deep-JASC, which
enabled the reporting of potential outliers and deficiencies of the
proposed approach.

In an MRI-guided AC in whole-body PET imaging study,
Arabi et al. [44] reported REs (%) of 15.8 ± 10.1, − 1.0 ± 6.8
and 3.9 ± 11.7 in the lung and − 9.6 ± 8.2, − 3.4 ± 5.2 and −
4.9 ± 6.7 in soft-tissue when using segmentation-based, atlas-
based and Hofmann’s pseudo CT generation approaches, re-
spectively. Mehranian et al. [45] performed a clinical assess-
ment of MLAA-guided MRI-constrained Gaussian mixture
model (GMM) algorithm and 4-class MRI segmentation-
based (MRAC) attenuation correction in whole-body time
TOF PET/MR imaging. They reported an average SUV RE
% (and RMSE) of − 5.4 ± 12.0 (13.1) and − 3.5 ± 6.6 (7.5) in
the lung, − 7.4 ± 1.8 (7.6) and − 5.4 ± 3.2 (6.3) in the liver, and
− 9.2 ± 6.0 (11.0) and − 3.1 ± 6.8 (7.5) in the myocardium for
MRAC and MLAA-GMM methods, respectively. Hofmann
et al. [46] evaluated segmentation and atlas-pattern recogni-
tion (AT&PR)–based whole-body AC in PET/MRI and re-
ported REs (%) of 14.1 ± 10.2 and 7.7 ± 8.4 for the segmen-
tat ion and the AT&PR approaches, respect ively.
Segmentation-based techniques require substantial pre-
processing steps and have limited performance in the lung
and bone regions because of weak signals produced by both
tissues. Different MR sequences address the signal generation
problem in conventional MR sequences. However, they are
limited by image artefacts, high levels of noise, limited diag-
nostic value and long acquisition time. Atlas-based AC
methods are affected by registration accuracy, which is limited
by inter/intra-patients variability.

Chang et al. [47] developed a PET-nonASC-based segmen-
tation using an active contour algorithm for PET AC and re-
ported SUV bias of 6% ± 7% in whole-body imaging. More
recently, Rezaei et al. [11] applied joint reconstruction of activ-
ity and attenuation in TOF PET imaging, achieving a RE (%) of
− 7.5 ± 4.6 in the whole-body. Likewise, Salomon et al. [48]
exploited a different framework for implementation of the joint
activity and attenuation correction and reported averaged REs

of − 10.3, − 2.9, − 2.0 and − 5.7 for bone, soft-tissue, fat and
lung regions, respectively. In an investigation of the impact of
TOF reconstruction on PET quantification, Mehranian et al.
[49] reported REs of − 3.4 ± 11.5 for the lung and − 21.8 ±
2.9 for bone using a non-TOF MRI-guided AC method. In this
study, the voxel-wise REs across the 150 patients of the inde-
pendent external validation set were − 1.72 ± 4.22%, 3.75 ±
6.91% and − 3.08 ± 5.64% for DL-2DS, DL-3DS and DL-
3DP methods, respectively. The DL-2DS method led to lower
RE compared with both DL-3DS (p value < 0.02) and DL-3DP
(p value < 0.05) approaches. In the DL-2DS technique, the
lowest and highest REs were 0.5 ± 5.04% in the neck region
and − 4.7 ± 4.02% in the lung region. For DL-3DS, the lowest
and highest REs were 0.41 ± 6.86 in the lung-liver and 5.81 ±
4.85 in the pelvic region. The REs in the lung regionwere − 4.7
± 4.02%, 2.54 ± 5.61% and − 1.01 ± 3.03% for DL-2DS, DL-
3DS and DL-3DP, respectively. Among the different Deep-
JASC approaches, DL-2DS resulted in the lowest SUV error
metrics (RMSE = 0.22 ± 0.08, RE = − 1.72 ± 4.22% and
SSIM= 0.96 ± 0.03). The highest error metrics (ARE = 15.16
± 3.96%, lowest PSNR = 31.7 ± 2.52 and SSIM= 0.93 ± 0.03)
were observed in the chest region.

Overall, the 2DS approach exhibited superior perfor-
mance over the different body regions, except the chest
region (Fig. 3). Smaller ARE% and MAE were observed
in the brain, neck, lung/liver, abdomen and pelvis regions
when using the 2DS approach compared with 3D modes.
This trend was reversed in the chest region where 3D
approaches led to significantly smaller ARE% and MAE
compared with the 2DS approach. This observation could
be partly attributed to the complexity and irregularity of
attenuation correction in this region wherein insufficient
structural/underlying uptake information in 2D slices led
to the inferior performance of the 2DS approach. Despite
the higher ARE% and MAE, 2DS exhibited better perfor-
mance with respect to PSNR and SSIM metrics, which
may be due to the patchy appearance of the images in
the 3D approaches.

The average errors calculated over either whole-body or
regional body regions reflected mostly the technical perfor-
mance of Deep-JASC approaches. However, a detailed anal-
ysis of tracer uptake in malignant lesions clarified the relevant
clinical performance of these approaches. Both 2DS and 3DS
approaches resulted in less than 4% errors in SUVmean and
SUVmax estimation (outperforming the 3DP approach with
more than 5% REs). Moreover, the significantly lower stan-
dard deviations achieved by 2DS confirmed the better perfor-
mance of this approach. The high tracer uptake, signal-to-
noise ratio and contrast of malignant lesions make them easy
to resolve in PET-nonASC images. As such, Deep-JASC per-
formed relatively better on malignant lesions in terms of tracer
uptake quantification compared with other body regions con-
taining mixtures of tissues/activity concentration levels.
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A major limitation of this approach is its vulnerability
to noise beyond the normal/average levels of noise or
signal-to-noise ratio (SNR) in PET-nonASC images
existing in the training dataset. In such a situation, the
deep learning–based technique would fail to discriminate
noise from the underlying structures or distinguish genuine
organ/lesion boundaries (supplemental Figures 4 and 5),
thus potentially leading to noise-induced pseudo structures
and/or loss of signal pertinent to underlying structures

(Supplemental Figure 6). The PET-nonASC image shown
in Supplemental figure 4C suffers from low SNR reflected
by poor organ boundaries particularly in the lung and
shoulders regions where the deep learning–based approach
failed to recover the actual activity distribution, leading to
gross errors in the chest region. However, in other patients
(e.g. Fig. 2), where PET-nonASC images bear relatively
good SNR, the proposed approach succeeded to recover
the actual activity distribution.
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Fig. 7 Case report of an outlier
showing: A pseudo hot spot
appeared in the PET images
corrected for attenuation/scatter
using the different deep learning-
based approaches. (A) CT, (B)
PET-CTAC, (C) PET-nonASC,
(D) PET-DL-2DS, (E) PET-DL-
3DS, (F) PET-DL-3DP and the
difference bias maps (G) PET-
DL-2DS – PET-CTAC, (H) PET-
DL-3DS – PET-CTAC and (I)
PET-DL-3DP – PET-CTAC. The
plot shows SUV profiles drawn
through the pseudo hot spot
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Although direct attenuation and scatter correction in the
image domain is immune to mismatch between PET and CT
images and potential respiratory motion-related errors, this
approach warrants the implementation of thorough quality
control measures of the resulting PET images to ensure accu-
rate lesion conspicuity and quantitative accuracy. This is
mainly due to the fact that this approach is still in an embry-
onic stage and requires further research and development ef-
forts to shed light on the potential capabilities and pitfalls of
this approach. Moreover, this approach performs the correc-
tion in an end-to-end fashion, and as such, failure of the deep
learning approach would directly translate into errors in the
resulting PET images.

We included disease-free and pathological patients with
various indications, such as age, weight and disease type
(for training and independent validation sets) resulting in a
heterogeneous database. This study naturally bears a number
of limitations. First, the training and independent validation
processes were performed on only 18F-FDG as a tracer. For
different radiotracer distributions, the network will need to be
retrained on PET images using other radiotracers. However,
the network trained on 18F-FDG PET images could be used to
initialize networks trained on PET images acquired with other
radiotracers via transfer learning [50]. This will also help to
address the issue of having a limited training dataset. Second,
all images were acquired on a PET/CT scanner. Hence, the
network has not yet been validated for PET/MRI applications
since this hybrid imaging uses rigid and surface MR coils
(invisible in PET images) in the field-of-view. This will add
challenges to the Deep-JASC approach, in particular for non-
rigid surface coils as they may not impact PET-nonASC im-
ages similarly/repeatability across the subjects. The network
should be validated for PET/MRI. Yet, PET/CT images in-
cluded the CT couch, yet the network performed reasonably
well.

Conclusion

This work demonstrated the feasibility of joint attenuation and
scatter correction of whole-body 18F-FDG PET images in the
image space using a residual convolutional neural network
(Deep-JASC) using an unprecedently large sample size. The
proposed algorithm does not require the use of anatomical
images (CT or MRI), thus providing a sensible solution in a
clinical setting for standalone PET scanners and PET/MRI
systems. Nevertheless, despite the promising results obtained,
the technique is vulnerable to and noise-induced artefacts,
which resulted in pseudo hot/cold spots or noticeable quanti-
fication errors across the organ boundaries, in particular be-
tween the lung and liver. Further research is guaranteed to
improve the algorithm’s performance.
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