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Abstract

Purpose Prostate imaging is one of the major application

of hybrid PET/MRI systems. Inaccurate attenuation maps

(l-maps) derived by direct segmentation (SEG) in which

the cortical bone is ignored and the volume of the air in

cavities is underestimated is the main challenge of com-

mercial PET/MRI systems for the quantitative analysis of

the pelvic region. The present study considered the cortical

bone and air cavity along with soft tissue, fat, and back-

ground air in the l-map of the pelvic region using a method

based on SEG. The proposed method uses a dedicated

imaging technique that increases the contrast between

regions and a hybrid segmentation method to classify MR

images based on intensity and morphologic characteristics

of tissues, such as symmetry and similarity of bony

structures.

Procedures Ten healthy volunteers underwent MRI and

ultra-low dose CT imaging. The dedicated MR imaging

technique uses the short echo time (STE) based on the

conventional sequencing implemented on a clinical 1.5T

MRI scanner. The generation of a l-map comprises the

following steps: (1) bias field correction; (2) hybrid seg-

mentation (HSEG), including segmenting images into

clusters of cortical bone-air, soft tissue, and fat using

spatial fuzzy c-means (SFCM), and separation of cortical

bone and internal air cavities using morphologic charac-

teristics; (3) the active contour approach for the separation

of background air; and (4) the generation of a five-class l-
map for cortical bone, internal air cavity, soft tissue, fat

tissue, and background air. Validation was done by com-

parison with segmented CT images.

Results The Dice and sensitivity metrics of cortical bone

structures and internal air cavities were 72 ± 11 and

66 ± 13 and 73 ± 10 and 68 ± 20 %, respectively. High

correlation was observed between CT and HSEG-based l-
maps (R2[ 0.99) and the corresponding sinograms

(R2[ 0.98).

Conclusions Currently, pelvis l-maps provided by the

current PET/MRI systems and the ultra-short echo time and

atlas-based methods tend to be inaccurate. The proposed

method acceptably generated a five-class l-map using only

one image.

Keywords PET/MRI � MRI-base attenuation correction �
STE pulse sequence � Morphologic characteristics-based

segmentation � Prostate imaging

Introduction

The use of the hybrid PET/MRI in research and clinics has

expanded owing to its potential for major breakthroughs in

imaging and therapy and developments in its technology

[1, 2]. The integrated PET/MRI developed for simultane-

ous PET and MRI imaging is a unique technology in this

context [1, 2]. Using this technology, the mis-overlay
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between the two imaging modalities is better minimized in

PET/MRI scanners than in PET/CT and SPECT/CT scan-

ners [2]. The main advantage of PET/MRI over PET/CT

stems from the use of MRI pulse sequence to increase the

contrast in soft tissue, sensitivity during detection of bone

metastases, and information about lesions [3]. The decrease

in the absorbed dose, a critical issue for ionizing radiation-

based imaging and patient follow-up, is another advantage

of PET/MRI relative to PET/CT [2]. These benefits

improve the depiction and analysis of challenging anatomic

parts, such as the pelvis and prostate [3]. Despite these

advantages and the promising preliminary clinical results,

MRI-guided attenuation correction (MRAC) remains a

main concern in PET/MRI, because it lacks an accurate and

reliable strategy [4].

In MRI, the signal depends on the proton density and the

relaxation times (T1 and T2) of the biological tissues, while

the CT data depend on the electron density correlating with

the attenuation coefficients of tissues for photons of

511 keV. Given that the MRI signal is not directly associ-

ated with electron density, there is no correlation between

the MRI signal and the attenuation coefficients of biological

tissues. Despite the large difference between the attenuation

coefficient of the air and bone at 511 keV, they have similar

intensities in MR images. This means that the accurate and

simple strategy used in PET/CT for the generation of l-
maps cannot be employed in hybrid PET/MRI systems.

Of the proposed MRAC strategies [4–8], the two most

important are the atlas (AT) [7] and direct segmentation

(SEG) [5, 6]. AT-based approaches rely on a reference

atlas constructed using many CT/MR image pairs. To

generate an attenuation map (l-map), an atlas is registered

on the MR images [7]. SEG-based approaches segment the

image directly into several tissue classes. These approaches

have reproducible results and are general, robust, and fast

[9]. Commercial PET/MRI scanners use these methods for

MRAC [5, 6, 9]. A three-class l-map (background air,

lung, and soft tissue) has been implemented on a Philips

Ingenuity TF PET/MR which is an adaptation of Schulz’s

approach [6]. A four/five-class l-map (background air,

lung, fat, mixture of fat and water, and water) was imple-

mented using a Siemens mMR PET/MR as an adaptation of

the Martinez–Moller approach [5]; however, the SEG-

based l-maps suffer from the lack of high accuracy caused

by partial volume effect and ignoring bones [5, 6].

The AC strategy used on commercial PET/MRI systems

yields satisfactory outcomes in a whole-body PET/MRI,

ignores bone regions, and underestimates air cavity vol-

ume, which has a noticeable effect on SUV estimation in

some regions [10–12]. These regions include the pelvis

with the prostate which has thick cortical bones and air

cavities. Because organs, such as the prostate, are a pri-

mary application of PET/MRI imaging, improvements in

AC are necessary [3]. The ultra-short echo time (UTE)

sequences can detect the signals of the cortical bone and

has been introduced for MRAC. The initial results on the

application of UTE-based AC on the head are promising

[13], but this technique requires development for use in

organs with large fields of view (FOV), such as the pelvis

[14]. UTE sequences often generate progressive artifacts

with an increase in FOV that hampers bone visualization

[14, 15]. UTE sequencing is also relatively time-consum-

ing, requiring several minutes per bed position, which

could lead to motion artifacts [14].

Brain ACs based on AT are reliable and robust because

of the rigidity of the head region. The application of this

strategy for the whole-body, however, is not feasible,

because registration in AT is error prone in non-rigid

regions, such as the thorax and pelvis. Because a pure AT

approach is knowledge-guided, its performance is limited

to anatomies that are similar to those stored in the corre-

sponding atlas [9, 14]. As a result, it likely to fail to cover

patients having anatomical variations and moveable air

cavities in the pelvis [14]. Although the AT/pattern

recognition (AT/PR) introduced by Hofmann et al. [7]

performs better than pure AT, its behavior in challenging

regions, such as the pelvis, is unclear and requires further

assessment [16].

The present study developed and evaluated a simple,

patient-based (not knowledge-based), fully automated

technique to segment MR images and generates a more

accurate l-map for pelvic organs. The proposed technique

(HSEG) takes the advantage of the SEG approach

employed in the current commercial PET/MRI systems and

uses the following morphological characteristics of bony

structures: symmetry, similarity, area, and perimeter. The

proposed technique segments dedicated MR images into

five classes: cortical bone, background air, internal air, fat,

and soft tissue. These images are achieved using only one

scan. The accuracy of the HSEG approach was compared

with the CT using the sensitivity, Dice, Jaccard, Hausdorff

distance (HD), relative volume error (RVE), and joint

histogram approaches.

Materials and methods

Image acquisition

MR imaging of the pelvic region was performed using a 1.5

T MRI system (Magnetom Avanto; Siemens Medical

Solutions; Germany). The STE sequence proposed by

Khateri et al. [17] was used to increase contrast between

regions and segmentation performance. It was shown

empirically that segmentation performance using STE was

better than the 3D multi-stack spoiled T1-weighted
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gradient and 3D T1-weighted turbo spin echo. STE is based

on the gradient echo sequence (GRE) sequence applied to

the pelvic organs of ten healthy volunteers using the fol-

lowing parameters: TE 1.31 ms, TR 20 ms, FA 15�, BW
501 Hz/pixel, NEX of 1, and total acquisition time of

4.39 min. A total of 600 slices (60 slices in each data set)

having a voxel size of 0.99 9 0.99 9 4 mm3 were used.

Ultra-low dose CT imaging was applied using a Light-

Speed VCT 64 CT scanner (GE Healthcare Technologies;

USA) to generate CT-based l-maps. The CT protocol of

120 kVp and 10 mAs and a voxel size of

0.79 9 0.79 9 3.75 mm3 were used. This protocol was

approved by the ethical committee of the Tehran Univer-

sity of Medical Sciences (license number 1432) and all

patients signed informed consent forms.

In MRI and CT scans, the subjects were positioned

supine with hands on chest. The superior and inferior limits

were set by scout view that those were from the iliac crests

to inferior to the lesser trochanter, respectively, in both

imaging. In addition, adjusting subject position in middle

of FOV was performed by scout view. Each subject was set

up by the same technician in both the scans to ensure the

most similar positioning. To decrease registration error, the

CT scan was performed within 5 min of the MRI. Fur-

thermore, a carbon fiber base plate was located on the CT

couch to increase the similarity of body position in MRI

and CT scans. This base plate is used for registration

procedure in clinic (radiotherapy).

MR image processing

All image processing steps except registration were

implemented in MATLAB. Figure 1a shows the steps

employed to generate a five-class MRI-based l-map.

MRI inhomogeneity correction

MRI inhomogeneity (bias field) is commonly caused by

object-dependent interactions and imperfections in

radiofrequency coils [18]. The correction of inhomogeneity

is necessary for MRI segmentation, particularly in regions

with a large FOV, such as the pelvis. The automatic-non-

parametric approach proposed by Manjoun et al. [18] was

used in which inhomogeneity is modeled using spline-

based basis functions. The coefficients related to these

functions were locally calculated using MR data by mini-

mizing the intensity-gradient entropy-related cost function

[18].

MRI segmentation

HSEG was performed slice-by-slice (2D) as described in

the following.

Image clustering

The inhomogeneity-corrected images were automatically

clustered into bone-air, soft tissue, and fat classes (Fig. 1a)

using the spatial fuzzy c-means (SFCM) approach. In contrast

to the FCM method, this approach incorporates global local

spatial information in the image to reduce mis-clustering and

spurious blobs, especially in noisy images, such as STE [19].

Separating cortical bone and internal air structures

Because bone and internal air structures have similar

intensities in MR images, they were classified in the same

cluster by SFCM, as shown in Fig. 1. A simple and fast

algorithm was developed in MATLAB to separate them

utilizing the morphologic characteristics of symmetry,

similarity, area, and perimeter. The main steps of this

algorithm are as follows:

Step 1 After converting the bone-air cluster in each slice

to a binary image, the boundaries of the objects

were automatically traced and labeled (Fig. 1a),

and the area and perimeter were determined

Step 2 Since subject position was adjusted in the middle

of FOV during scout view imaging, the symmetry

axis was located on the midline of the body. In

this situation, bony structures, such as the pelvis,

are somewhat symmetric pairwise (Fig. 1); thus,

this morphologic characteristic was used to

distinguish bony objects from massive air objects.

To find the symmetric counterpart (doublet) of a

bony object, such as b1, in Fig. 1b, this object

was flipped in the left/right directions (b10 in
Fig. 1b) around a symmetry axis. The number of

overlapping pixels between the object and the

other objects in the slice was then calculated. This

process was repeated for each object in the slice.

Normally, only perfectly (or partially) symmetric

pairwise bones have some overlapping pixels

Step 3 Figure 1b shows that bony objects b10 and b2 are

similar in shape and size. This feature was used to

improve object separation in the previous step

using the 2D cross-correlation (C i; jð Þ) index [20].

Because this index is invariant with regard to the

position of the objects, the two similar objects

located in each position can be recognized

regardless of the presence or absence of symmetry

[20]. The equation of this index is as follows:

CAo1�Ao2
i; jð Þ ¼

XM1�1

m¼0

XN1�1

n¼0

A
f
o2 m; nð Þ

� conj Ao1 mþ i; nþ jð Þð Þ ð1Þ
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SVAo1 Ao2
¼ Max CAo1�Ao2

i; jð Þð Þ ð2Þ

where 0� i\M1 þM2 � 1 and 0� j\N1 þ N2 � 1, as

well as M1 � N1 and M2 � N2 are the matrix size of

objects Ao1 and A
f
o2, respectively. A

f
o2 and SVAo1 Ao2

denote

the flipped matrix of object Ao2 and the similarity value

between two objects, respectively. conj operator returns

complex conjugate of the element of Ao1, which is not

effective on our images owing to the fact that all pixel

intensities were real numbers.

Two objects with similar areas and perimeters may have

someoverlappingpixels (more than10pixels), and thepeakof

SV is considered to be bone in each slice. Becausemassive air

cavities do not simultaneously possess all featuresmentioned,

these can be separated from the bony regions.

A closing morphologic operation was applied on bone

masks for connecting the area of discontinuities [21], fol-

lowed by a dilating morphologic operation to bold cortical

bone structures, because these are depicted smaller than

their actual size in STE images [22].

Background segmentation

The Chan–Vese method was used to segment the back-

ground (external air) of pelvic MR images. A circular

Fig. 1 a Workflow of the hybrid algorithm proposed for segmenting and generating a five-class lmap. b Object separation based on symmetry

and similarity features of bony structures
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initial contour was defined at the center of the image over

300 iterations to capture the border of the body and sepa-

rate it from the background [23].

MR-based l-map generation

The binary masks of the cortical bone, internal air cavity,

background, soft tissue, and fat were added into a zero 3D

matrix (Fig. 1a). Then, a kernel of 3 9 3 was applied in z

direction on the matrix for connecting the object contours

smoothly along slices. The attenuation coefficients of the

tissues at 511 keV were assigned to each mask according

to the values in ICRU 44 [24]. The assigned values were

0.172, 0.000, 0.000, 0.096, and 0.089 cm-1 for cortical

bone, internal air cavity, background, soft tissue, and fat,

respectively [5, 11]. To generate a typical l-map, the

segmented images were down-sampled to a matrix size of

256 9 256 and smoothed by a Gaussian filter with 5 mm

full-width at half-maximum (FWHM) to be matched with

the spatial resolution of the PET images.

CT data processing

To assess the validity of HSEG for segmentation of MR

images, the corresponding CT data was utilized as a ref-

erence. The 3D CT images were registered on 3D MR

images after pre-processing, which was necessary for

acceptable registration. The main pre-registration steps

were couch and background removal, as well as image

denoising. The first two steps were performed using the

Chan–Vese approach [23]. For CT denoising, the non-local

mean introduced by Mairal et al. was employed [25].

Image registration

The 3D registration was performed using the Elastix

package as based on the insight segmentation and regis-

tration toolkit [26]. Because pelvic region is a non-rigid

region [27], two-step registration was applied to CT images

to achieve close to perfect alignment between the CT and

MR data as described previously [27]. The steps are as

follows:

Step 1 The CT images underwent an affine

transformation using the following parameters:

number of histogram bins = 32, number of

resolutions = 4, and maximum number of

iterations at each resolution level = 250. The

optimizer and metric used were adaptive

stochastic gradient descent and advanced mattes

mutual information, respectively

Step 2 The transformed CT images underwent non-rigid

alignment using b-spline transformation on the

parameters used in the previous section, except

that the maximum number of iterations was 2000

[27]. The performance of registration results was

assessed using Dice and Jaccard metrics that

measure the mean and union overlap,

respectively, between the CT and MR labeled

regions [27]

CT segmentation and l-map generation

The deformed CT images were segmented by thresholding

into cortical bone (I[ 300 HU), soft tissue

(20HU\ I\ 300 HU), fat tissue (-100 HU\ I\ 20

HU), internal air (I\-100 HU), and background

(I\-100 HU) [5, 11]. The same attenuation coefficients

used in MR-based l-map generation were assigned to each

class to evaluate HSEG. The segmented images were then

down-sampled to a matrix 256 9 256 in size and smoothed

using a Gaussian filter with an FWHM of 5 mm.

Quantitative assessment

Of the 60 MR slices in each data set, 54 were employed for

quantitative assessment and the rest (the first and the final

three slices) were omitted owing to noticeable registration

errors. To evaluate the HSEH segmentation method, the

sensitivity, Dice, and Jaccard metrics, which compare the

similarity of segmentation results via measuring the per-

centage volume overlap between them, were calculated.

These metrics were calculated by voxel-by-voxel compar-

ison between CT-based and MR-based binary masks as

Sensitivity CTr;MRrð Þ ¼ CTr \MRrj j
CTrj j � 100 ð3Þ

Dice CTr;MRrð Þ ¼ 2 CTr \MRrj j
CTrj j þ MRrj j � 100 ð4Þ

Jaccard CTr;MRrð Þ ¼ CTr \MRrj j
CTr [MRrj j � 100 ð5Þ

where CTr and MRr are the binary segmented regions

(cortical bone, soft tissue, fat, and air cavity) from the

reference CT images and MR images, respectively, and the

‘‘absolute value’’ sign means the number of all voxels

which meet the set operator conditions in the relation.

As such, the RVE measuring volume overlay error was

computed using Eq. (6). This index accurately compared

similar masks in the CT and MRI images regardless of the

presence of mis-registration error as a confounder [27]:
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Relative volume error RVEð Þ ¼ MRrj j � CTrj j
CTrj j � 100:

ð6Þ

The HD was calculated using Eq. (7). This index as a

surface distance measure metric evaluates the maximum

distance (d) needed to move the boundaries of the CT mask

to completely cover the MRI mask [28].

HD ¼ maxCTr
minMRr

d CTr;MRrð Þf gf g: ð7Þ

These metrics were calculated for four classes of the

cortical bone, soft tissue, fat, and air cavity. The perfor-

mance of the HSEG-based l-map was illustrated in a joint

histogram to determine the degree of similarity (in the form

of correlation) between the MR and CT-based l-maps and

the sinograms of attenuation correction factor (ACF).

Results

Figure 2 represents the outcome of each step in the process

of generating l-maps for representative MR images. Fig-

ure 2a shows that the imaging technique produced a proper

contrast between the desired classes (soft tissue, fat, and

cortical bone-air) that increased the performance of SFCM

as an intensity-based clustering approach. Figure 2b shows

that inhomogeneity correction acceptably decreased the

bias field on the MR images and improved clustering of

data (Fig. 2c). It was observed that clustering cannot be

performed by SFCM without such a correction. Figure 2d

shows the l-maps and the performance of HSEG for the

separation of cortical bone, soft tissue, fat, internal air

cavity, and external air segments. Visual inspection reveals

the potential of the strategy for the segmentation of pelvic

MR images.

The results of the two-step registration for the pelvic

area as a non-rigid region are illustrated in Fig. 3. The

cortical bone in the affine-transformed CT was a poor

match with the corresponding cortical bone in the MR

image (Fig. 3d, e). After the application of the B-spline

transform, they showed a visually acceptable match

(Fig. 3g, h) for use in evaluation. Similarity, the average of

Dice (92.1 ± 5 %) and Jaccard metrics (94.4 ± 3 %) in

the pelvic region indicate that the CT and MR images were

acceptably matched together.

Figure 4 shows the l-maps derived from the MRI and

CT images in the coronal and transverse planes along with

their different maps. Visual assessment confirms that the

accuracy of the HSEG-based l-map in the most regions

was comparable to the CT-based l-map except for the

femoral head (Fig. 4, red arrows). The results of the

assessment of HSEG using the sensitivity, Dice, Jaccard,

and HD metrics are summarized in Table 1. The Dice,

sensitivity, and Jaccard metrics were greater than 72, 66,

and 57 %, respectively, in all regions. The HD was less

than 4.17 mm for cortical bone and internal air cavity.

Table 2 shows the RVE data and the volumes of the seg-

mented regions. The RVEs in the cortical bone, soft tissue,

fat tissue, and air cavity regions were -31.7 ± 4.21,

12.2 ± 6.14, -23.8 ± 4.62, and 26.9 ± 17.22 %, respec-

tively. A negative RVE signifies the underestimation of the

volume by HSEG.

Figure 5 shows the total join histograms of the CT and

HSEG-based l-maps and the corresponding sinograms for

270 slices and complex slices. Visual assessment reveals

the similarity between l-maps in all regions with a slight

deviation in l of 0.10 cm-1, as shown in Fig. 5a and c.

Moreover, the correlation of all slices yielded the correla-

tion coefficients of 0.993 ± 0.002 and 0.983 ± 0.017,

respectively, for l-maps and ACF sinograms. The results

for the more complicated slices were 0.991 ± 0.002 and

0.947 ± 0.003, respectively, and for the less complex sli-

ces were 0.997 ± 0.002 and 0.994 ± 0.002, respectively.

Discussion

In whole-body imaging, SEG-based strategies, such as the

approaches used in commercial PET/MRI scanners, are

faster and more robust for dealing with anatomical varia-

tion and non-rigidity than approaches based on AT and AT/

PR [9, 16]. These strategies, such as the methods proposed

by Martinez-Mollers et al. and Schulz et al., generate

inaccurate l-maps by ignoring cortical bones and under-

estimating the volume of internal air cavities [10, 11]. The

method proposed by Martinez-Mollers et al. noticeably

omitted internal air cavities while using a large morpho-

logic closing filter (5 mm in each spatial direction) [5].

The present study considered cortical bones and internal

air cavities in the l-maps of the pelvic region using the

algorithm illustrated in Fig. 1. The proposed algorithm

consists of a dedicated imaging technique that increases the

contrast between regions and the HSEG to classify MR

images on the basis of intensity and morphologic charac-

teristics. This technique takes the advantage of the SEG

approach and specific features in bones (symmetry, simi-

larity, area, and perimeter) to generate a five-class l-map

comprising fat, soft tissue, cortical bone, internal air cavity,

and background. To our knowledge, this is the first study to

consider cortical bones and air cavities in the l-map of

pelvic region using this technique.

The visual assessment of Fig. 2 and the results presented

in Tables 1 and 2 reveal that SFCM acceptably enabled

clustering of the fat and soft tissue on the dedicated MR

images. For example, the values for evaluation metrics in

soft tissues (Dice of 86 ± 18 %, sensitivity of 90 ± 4 %,
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Fig. 2 Outcome of each step in the process of generating l-maps for

representative images. a MR images are provided by the STE pulse

sequence, b bias filed correction by Manjoun‘s approach, c the

clusters created by the SFCM approach; c1 cluster soft tissue, c2

cluster fat, c3 cluster cortical bone-air cavity, d five-class l-maps

Fig. 3 Two-step registration approach for accurate matching the 3D-

CT images to the 3D-MR images in pelvic region. a CT image, b MR

image, and c affine-transformed CT; overlaying the bones in the

affine-transformed CT on MRI d transverse view, e coronal view, and

f B-Spline transformed CT; overlaying the bones in the B-spline

transformed CT on MRI g transverse view and h coronal view. Yellow

arrows show wrong overlay in affine registration. Red arrows show

acceptable overlay in B-spline registration

Ann Nucl Med (2017) 31:29–39 35
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and HD of 6.6 ± 1.5 mm) and fat tissue (Dice metric of

77 ± 25 %, sensitivity of 70 ± 11 %, and HD of

4.66 ± 2.4 mm) verify this claim. The same trend was

observed for the RVE index, for which the mis-registration

is a confounder [29]. Table 2 shows the RVEs for seg-

mented fat, and soft tissue were -23.8 ± 4.62 and

12.2 ± 6.14 %, respectively. These efficiently demonstrate

the proposed method for segmenting the fat and soft tissues

in pelvis. These results are important, because the separa-

tion of fat and soft tissue was achieved with only one

image, whereas the protocol proposed by Martinez-Mollers

et al. requires two images (in-phase and oppose-phase) [9].

Fig. 4 a l-maps generated from MR images using the HSEG method, b l-maps generated from CT images, and c difference maps in coronal

and transverse view. Red arrows show femoral head ignoring in the HSEG method

Table 1 Quantitative

assessment of the HSEG-based

segmentation procedure by

voxelwise comparison

Sensitivity (%) Dice similarity (%) Jaccard similarity (%) Hausdorff distance (mm)

Mean ± SD

Cortical Bone 66 ± 13 72 ± 11 57 ± 18 4.17 ± 1.3

Internal Air 68 ± 20 73 ± 10 63 ± 15 4.03 ± 1.0

Soft tissue 90 ± 4 86 ± 18 77 ± 6 6.6 ± 1.5

Fat 70 ± 11 77 ± 25 65 ± 22 4.66 ± 2.4

The CT-based segmentation procedure is considered as reference

36 Ann Nucl Med (2017) 31:29–39
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Because the internal air cavities and cortical bones in

MR images have similar intensities, they could not be

separated by SFCM, which is an intensity–based segmen-

tation method (Fig. 2c). Table 1 shows that the Dice,

sensitivity, and Jaccard metrics for the cortical bones

segmented using morphologic characteristics were

72 ± 11, 66 ± 13, and 57 ± 18 %, respectively. In com-

parison with these results, the Hofmann method [7], an AT-

PR approach to segment cortical bones, yielded a sensi-

tivity of 40 ± 0.15 %, Dice of 58 ± 0.09 %, and Jaccard

of 35 ± 0.06 %. Cabello et al. [30] investigated UTE-

based segmentation on head organs and reported that the

Dice and Jaccard metrics were 69 and 53 %, respectively,

for bone segmentation. Dice metrics of 65 % (53–69 %;

Aasheim et al.), 75 ± 5 % (Juttukonda et al.), and 49 %

(34–69 %; Delso et al.) have been reported that show

similar outcomes for UTE-based segmentation [15, 31, 32].

The proposed method showed better results relative to the

Hofmann approach and similar results relative to the UTE

approach. Although this method presents fewer challenges

in the pelvic region than the AT and UTE methods [9], it

should be noted that the results of the current study were

compared with UTE data for the head, because the results

for UTE-based segmentation were reported only for head

organs.

The proposed algorithm had difficulty extracting thin

(less than a slice in thickness) cortical bone, such as of the

femoral head (RVE of -70 ± 8 %) because of the partial

volume effect, a common limitation in SEG-based strate-

gies for MRAC (Fig. 4; Table 2) [5]. Recent studies by the

authors and Samarin et al. found that this issue might have

a slight influence on the accuracy of tracer uptake [12, 27].

Samarin et al. investigated the effect of cortical bone on the

accuracy of tracer uptake and reported that thin cortical

bones had a negligible effect (5 %) compared to thick

cortical bones in the pelvic region (30 %) [12, 27].

Notable performance by the HSEG for internal air seg-

mentation (Dice of 73 ± 10 %, sensitivity of 68 ± 20 %,

Jaccard of 63 ± 0.15 %, and RVE of 26.9 ± 17.22 %) was

achieved (Tables 1, 2; Fig. 2). Although the volume of air

cavities is primarily ignored in the MRAC employed in the

current PET/MRI systems, the above results show accept-

able performance of the proposed strategy [5, 6, 9].

Because the pelvic region often contains massive air cav-

ities (Fig. 2), substituting all or parts of the air cavity with

soft tissue in l-map will affect local uptake and also likely

global uptake owing to reconstruction process [10, 11].

The joint histograms plotted in Fig. 5 indicate that the

HSEG and CT-based l-maps correlated well with average

correlation coefficients of[0.981. The abrupt deviation

created at l = 0.10 cm-1 (Fig. 5a, c) arose from replacing

l of cortical bone with soft tissue, in particular for regions

having thin cortical bone, such as the femoral head. To

compensate for the lack of access to PET images, ACF

sinograms were computed from l-maps to evaluate the

effect of the proposed l-maps on PET reconstruction. The

joint histograms and high correlation coefficients for the

ACF maps suggest that they have a similar effect on

reconstruction procedure for PET/MRI.

As mentioned, the SEG-based approaches used in com-

mercial PET/MR systems ignore cortical bone and most air

cavity volume [6, 9]. It is well known that a UTE sequence

of the head generates artifacts in regions with a large FOV,

such as the pelvis [14]. The AT-based segmentation

approaches are time-consuming and error prone in non-rigid

regions, such as the pelvis. It is reported that the magnitude

of matching error in some non-rigid regions is even more

than the cortical bone thickness [7, 33]. As such, they are

less able to deal with organs, such as the bowel with mov-

able and massive air cavities [14, 16]. It appears that the

proposed approach is more suitable for the pelvic region,

which is a common target of PET/MRI imaging.

The performance of this hybrid approach in bone

structure with pathologic variations, e.g., metastatic bone

or implants, could be problematic (similar to AT) and

requires further study. The lack of access to PET/MRI

systems for more comprehensive evaluation was the main

limitation of the present study. Further investigation is

underway to decrease concerns by increasing the opti-

mization of the protocol, improving the accuracy of the

registration procedure, and exploiting the optimized

method for the entire body.

Conclusion

This work proposes a novel hybrid method for segmenting

dedicated MR images into five classes for MRAC on PET/

MRI systems. The results reveal that the proposed method

Table 2 RVE of the regions segmented by the HSEG approach in

comparison with the segmented CT as reference in all data set

Regions Average number of pixels Relative volume (%)

Mean ± SD
Segmentation based on

HSEG CT

Cortical bone

Femur 18,452 20,210 -8.7 ± 6.03

Femur head 1005 3406 -70.5 ± 8.03

Iliac and ilium 17,923 23,277 -23 ± 5.10

Cortical bone 66,799 97,802 -31.7 ± 4.21

Fat tissue 671,257 880,910 -23.8 ± 4.62

Soft tissue 1,864,813 1,662,024 12.2 ± 6.14

Internal Air 9431 7431 26.9 ± 17.22

Ann Nucl Med (2017) 31:29–39 37

123



can accurately segment cortical bone and air cavities in the

pelvic region which are ignored in current PET/MRI sys-

tems. In addition, fat segmentation was acceptably per-

formed using only one image, whereas two images are

required in scanners. Cortical bone, internal and external air,

soft tissue, and fat segmentation using an image provided by

a conventional MR sequence reflect the novelty of our work.

The suggested method can improve the accuracy of SUV

estimation on PET/MRI imaging in clinical images.
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